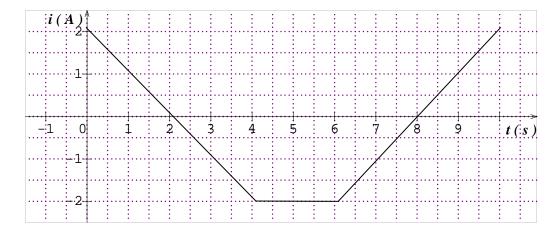
Exercice N°1

Une bobine est parcourue par un courant variable comme l'indique la Fig.

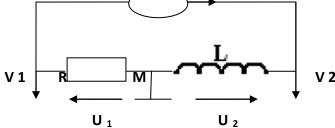


- 1- Déterminer l'expression de i = f(t) dans chacun des intervalles suivants : [0s ; 4s], [4s ; 6s] et [6s ; 10s].
- 2- Quel phénomène apparait dans la bobine ? justifier la réponse.
- 3- Déterminer l'expression de la force électromotrice induite qui apparait dans la bobine. Sachant que son inductance **L vaut 0,5H.**
- 4- Représenter **e = f(t)** dans les intervalles : [0s ; 4s], [4s ; 6s] et [6s ; 10s].
- 5- Soit **A** et **C** les bornes de la bobine. Déterminer l'expression de la tension \mathbf{U}_{AC} dans chacun des intervalles précédents, sachant que la résistance \mathbf{r} de la bobine vaut $\mathbf{10}\Omega$.

Représenter graphiquement $U_{AC} = f(t)$ dans l'intervalle [0s ; 10s].

Exercice N°2

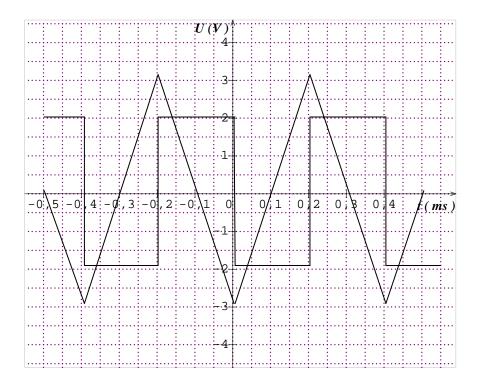
Soit le circuit électrique représenté ci – dissous comporte : un **GBF** délivrant une tension triangulaire, un résistor de résistance $\mathbf{R} = \mathbf{6} \ \mathbf{K} \mathbf{\Omega}$ et une bobine purement inductive d'inductance \mathbf{L} .



Série physique : Dipôle RL

4^{éme}
M- Sc exp

A l'aide d'un oscilloscope bi-courbe, on visualise les tensions **U**₁ sur la **voie 1** et **U**₂ sur la **voie 2**, on obtient les oscillogrammes suivants :

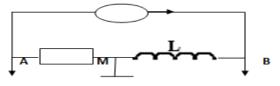


- 1- Que représentent les tensions U₁ et U₂ ?
- 2- Exprimer ces tensions en fonction de R, L et i.
- 3- Montrer que $U_2 = -L/R du_1/dt$.
- 4- Déterminer la valeur de l'inductance L da la bobine.

Exercice N°3

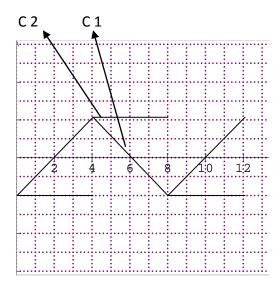
On désire déterminer les caractéristiques d'une bobine : son inductance ${\bf L}$ et sa résistance interne ${\bf r}$

A- On associe, en série cette bobine a' un conducteur ohmique de résistance $\mathbf{R_1} = \mathbf{1}\mathbf{K}\mathbf{\Omega}$ de telle sorte qu'on néglige la résistance interne \mathbf{r} de la bobine. L'ensemble est



alimente par un GBF de f.e.m E.

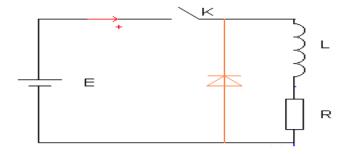
On étudié a' l'aide d'un oscilloscope a' deux voies la tension \mathbf{U}_{AM} aux bornes du conducteur ohmique (courbe \mathbf{C}_1) et la tension \mathbf{U}_{BM} aux bornes de la bobine (courbe \mathbf{C}_2). On observe les oscillogrammes de la Fig.



Base de temps ; 1ms/ carreau : Vois 1 (courbe C_1) ; 1V / carreau : vois 2 (courbe C_2) ; 0,1V / carreau

- 1- Ecrire l'expression de la tension $U_{AM}(t)$ en fonction de i.
- 2- a- Donner l'expression de la tension U_{BM}(t) en fonction de L et i.
 b- En déduire la relation entre U_{BM} et U_{AM}.
- 3- Déterminer l'inductance L de la bobine.
- B- On associe, en série la bobine précédente a' un conducteur ohmique de résistance R_2 tel que la résistance total $R = R_2 + r = 50\Omega$.

L'ensemble est relié aux bornes d'un générateur idéal de tension de f.e.m E.

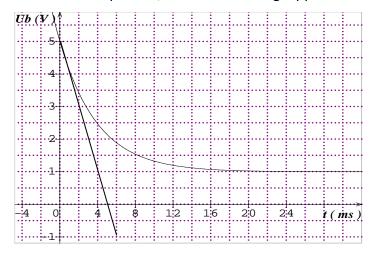


Série physique : Dipôle RL

4^{éme}
M- Sc exp

Un dispositif informatisé permet d'enregistrer l'évolution de la tension $\mathbf{U}_{B}(\mathbf{t})$ au cours du temps.

A t= 0, on ferme l'interrupteur K, la courbe de la fig. apparait sur l'écran.

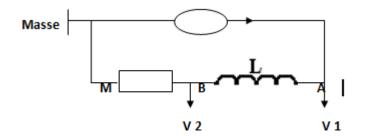


- 1- En utilisant la loi des mailles;
 - a- Etablir l'équation différentielle vérifiée par i(t).
 - b- Vérifier que l'expression de l'intensité instantanée est ; $i(t) = E/R (1 e^{-t/\tau})$ avec $\tau = L/R$.
 - c- Montrer qu'en régime permanant, la tension aux bornes de la bobine s'écrit : $U_B = r E/R$.
 - d- En exploitant la courbe, déterminer la valeur de la résistance ${\bf r}$ de la bobine. En déduire la valeur de la résistance ${\bf R_2}$.
- 2- a- Déterminer l'intensité I_P du courant en régime permanent.
 - b- Retrouver la valeur de l'inductance L de la bobine.
 - c- Calculer l'énergie magnétique emmagasinée dans cette bobine en régime permanent.

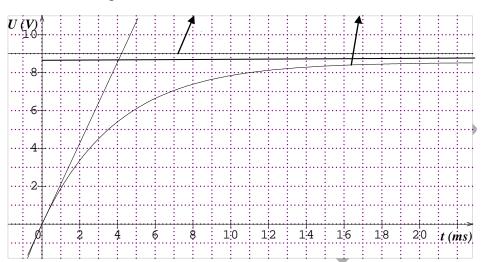
Exercice N°4

On réalise le circuit électrique suivant, qui comporte

- Un générateur délivrant une tension constante E.
- Une bobine d'inductance L = 0,4 H et de résistance r.
- Un résistor de résistance R.

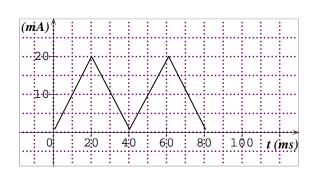


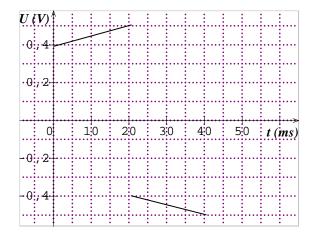
1- A l'instant **t** = **0** on ferme l'interrupteur et on procède a' l'acquisition on obtient les courbes de la Fig.2 **courbe a courbe b**



- a- Identifier les courbes a et b.
 Justifier la réponse et expliquer qualitativement l'allure de la courbe b.
- b- Etablir l'équation différentielle. Vérifiée par la tension **U**_{BM} aux bornes du résistor
- c- En applique la loi des mailles donner les expressions de l'intensité de courant I_0 et de la tension U_0 aux bornes du résistor lorsque le régime permanent s'établit.
- d- En exploitant les courbes. Déterminer : ${\bf E}$; ${\bf U_0}$ et la constante du temps ${\bf \tau}$ du dipôle ${\bf RL}$
- e- Déterminer R et r.
- 2- Dans cette partie la bobine est branchée aux bornes d'un GBF délivrant une tension triangulaire. Un système d'acquisition convenablement branché permet de tracer les courbes i = f(t) et U_b = g(t).
 - a- En exploitant les 2 courbes sur l'intervalle [0 : 20ms], retrouver la valeur de L'inductance L.

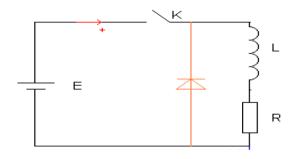
b- Représenter la courbe e = f(t) sur [0 ; 40ms].





Exercice N°5

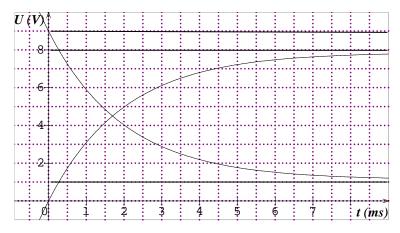
On considère, ci-dessous, un circuit électrique composé d'un générateur de tension continue de **f.e.m E**, d'une bobine d'inductance **L** et de résistance **r**, d'un interrupteur **K** et d'un conducteur ohmique de résistance $\mathbf{R} = \mathbf{35}\mathbf{\hat{\Omega}}$.



- 1- Etablir l'équation différentielle relative a' l'intensité i du courant au cours de son établissement.
- 2- Cette équation différentielle admet une solution de la forme : $\mathbf{i} = \mathbf{A} \mathbf{e}^{-\alpha t} + \mathbf{B}$. Déterminer les expressions littérales de :
- a- A, B et α .
- b- $U_{AB}(t)$ et $U_{BC}(t)$. $\begin{cases} UAB = UB \\ UBC = UR \end{cases}$
- 3- En régime permanent, en déduire l'expression de :
 - a- L'intensité I du courant.
 - b- U_{AB} et de U_{BC} ;

4- Un dispositif approprié permet de suivre les valeurs des tensions **U**_{AB} et **U**_{BC} au cours du temps.

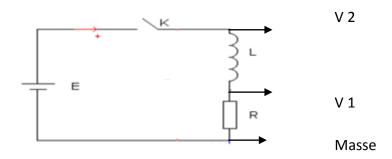
La fermeture de l'interrupteur est prise comme origine des temps. On obtient les courbes ci-contre :



- a- Calculer I, r et E.
- b- Calculer la constante de temps τ et en déduire L.
- 5- On reprend la même expérience en remplacent la bobine par une autre purement inductive de même inductance que la précédente. Tracer sur le même graphe les allures des courbes $U_{AB}(t)$ et $U_{BC}(t)$

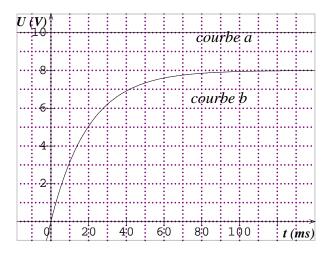
Exercice N°6

Un circuit électrique comporte, en série ; un générateur de tension de **f.e.m E**, un résistor de résistance $\mathbf{R_0}$, un interrupteur \mathbf{K} et une bobine d'inductance \mathbf{L} et de résistance \mathbf{r} .



M-Sc exp

A **t** = **0** on ferme **K** et a' l'aide d'un oscilloscope a' mémoire branché comme l'indique la Fig.1 On obtient les oscillogrammes de la Fig. 2.



1-

- a- Quelle sont les tensions visualisées sur les vois (1) et (2) de l'oscilloscope?
- b- Identifier les courbes (a) et (b).
- c- Quelle est la tension qui permet de suivre l'évolution de l'intensité **i(t)** du courant dans le circuit ?
- 2- Etablir l'équation différentielle a' laquelle obéit i(t).

3-

- a- Vérifier que $I(t) = I_0 (1 e^{-t/\tau})$ est une solution de cette équation différentielle.
- b- Déterminer graphiquement la constante de temps τ de ce circuit.
- c- Sachant que $I_0 = 0,4$, déterminer la valeur de R_0 puis celle de r.
- d- En déduire la valeur de l'inductance L de la bobine.

4-

- a- Etablir l'expression de la tension $U_b(t)$ aux bornes de la bobine lorsque le régime permanent s'établit.
- b- Tracer l'allure de U_b(t).
- 5- Calculer l'énergie **E**_b lorsque le régime permanant s'établit.