

Exercice 1:

A la température de 1300 $^{\circ}$ C, le monoxyde de carbone CO réagit avec la vapeur d'eau H_2O pour donner du dioxyde de carbone CO_2 et du dihydrogène H_2 . Tous les composés sont à l'état gazeux.

$$CO_{(g)} + H_2O_{(g)} = CO_{2(g)} + H_{2(g)}$$

On introduit dans un récipient de volume V constant les quantités suivantes :

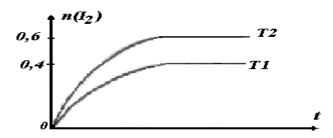
Une mole de H₂O, 0,5 mol de CO et 0,15 mol de CO₂

- 1- Montrer que la réaction spontanée dans le sens direct.
- 2- A l'équilibre dynamique, il s'est formé 0,2 mol. de dihydrogène.
 - a- Donner la composition du mélange ainsi obtenu.
 - b- En déduire la valeur de la constante d'équilibre K relative à la réaction étudiée.
- 3 Préciser, en le justifiant, l'effet d'une augmentation de pression sur l'équilibre précédemment atteint.

Exercice 2:

On introduit **n**₀=**0.4 mol** de **PCl**₅ à 300°C dans un récipient de volume constant ; il se forme à l'équilibre **0.05 mol** de **Cl**₂ par la réaction <u>endothermique</u> symbolisée par l'équation chimique suivante :

$$PCl_5(g)$$
 \longrightarrow $PCl_3(g) + Cl_2(g)$


- 1- Dresser un tableau d'avancement pour ce systeme.
- **2-a-**Déterminer la valeur de l'avancement maximale \mathbf{x}_{max} de la réaction.
- **b-** En déduire la valeur du taux d'avancement finale τ_f de cette réaction.
- 3- Déterminer la composition molaire du système à l'équilibre.
- 4- Dans quel sens se déplace l'équilibre :
- a- si on augmente la pression à température constante ?
- **b-** si on augmente la température à pression constante ?

Exercice3:

On introduit dans un récipient fermé à volume constant, no moles de HI qui se dissocie suivant la réaction chimique suivante:

2HI <==> I₂ + H₂

La figure ci-contre représente la variation du nombre de moles du diiode formé en fonction du temps pour deux températures différente T1 et T2à pression constante.

- 1- Sachant que $T_1 > T_2$ Dire en justifiant, si la réaction de dissociation de HI est endothermique ou exothermique.
- 2- La constante d'équilibre relative aux concentrations à la température T₁ est K₁=0.11

Calculer le nombre de moles de HI initialement introduit. En déduire le coefficient de dissociation de HI.

- 3- Déterminer la composition du mélange à l'équilibre à la température T₂.
- 4- A l'équilibre obtenu, à la température T_2 , on introduit dans le récipient 0,2 mole de H_2 , 0,2 mole de H_2 et 0,2 mole de H_2 . Dans quel sens évolue l'équilibre chimique? Justifier.

Exercice 4:

On donne pour la réaction symbolisée par l'équation chimique :

$$N_2O_{4 (g)}$$
 \longrightarrow $2NO_{2(g)}$

Sous la pression de 1atm, on a obtenu un taux d'avancement final de réaction égale à 0,49 à 55°C et égale à 0,23 à 32°C

- 1- La réaction étudiée est-elle endothermique ou exothermique ?
- 2- Comment se déplace l'équilibre :
 - a- Si on diminue la température à pression constante
 - b- Si on diminue le volume du système à température constante

Exercice 5:

A une température T_1 et dans un ballon de volume V, on introduit n_1 = 2 moles de dioxyde de soufre et n_2 = 1 moles d'oxygène. Il s'établit l'équilibre suivant: $2SO_{2\,(gaz)} + O_{2\,(gaz)}$ $2SO_{3\,(gaz)}$

La constante d'équilibre relative à la réaction étudiée est $K_1 = 200$.

- 1- A l'équilibre, il se forme <u>une mole</u> de trioxyde de soufre.
 - a- Déterminer avec justification l'avancement final de la réaction.
 - b- Calculer le taux d'avancement final.
 - c- Cette réaction est-elle totale ou limitée ?
- 2- Une étude expérimentale de cette réaction à la même pression mais à une température T_2 plus basse ($T_2 < T_1$), montre que la constante d'équilibre est $K_2 = 44$. Déterminer le caractère énergétique de la réaction étudiée.
- 3- Comment évolue le système suite à une :
 - a- Addition d'une quantité de SO₂.
 - b- Diminution de volume à température constante.
 - c- Diminution de température à pression constante.

Exercice 6:

Dans un récipient de volume 1 litre on introduit 8.5g, d'ammoniac NH_3 gazeux à la température $327^{\circ}C$. Il s'établit un équilibre chimique d'équation : $2NH_3(g)$ $N_2(g) + 3H_2(g)$

La constante d'équilibre est K = 0, 16

1- Calculer la quantité de matière n₀ de NH₃ initiale

On donne : $N = 14 \text{ g.mol}^{-1}$, $H = 1 \text{ g mol}^{-1}$

- 2- Soit x le nombre de mole de N₂ à l'équilibre, exprimer K la constante d'équilibre en fonction de x, no et V ? Calculer x ?
- 3- Déterminer la composition du système à l'équilibre ?
- 4- a- Exprimer K en fonction du coefficient de dissociation α de NH 3

a =Nombre de moles de NH 3 dissociées/Nombre de moles de NH 3 initiales

- b- On élève la température à pression constante du mélange jusqu'à 727° C ;La constante d'équilibre prend une nouvelle valeur K' > K
 - Comment varie le coefficient de dissociation. Déterminer le caractère énergétique de la dissociation de l'ammoniac ?

Exercice 7:

La dissociation de l'iodure d'hydrogène donne lieu à l'équilibre suivant:

$$2HI(g)$$
 <==> $H_2(g) + I_2(g)$

On introduit 1 mole de HI dans un récipient de volume V.

I- Le graphe ci-dessous, donne les variations du nombre de moles d'iodure d'hydrogène en fonction du temps, à deux températures différentes T_1 et T_2 . $(T_2 > T_1)$

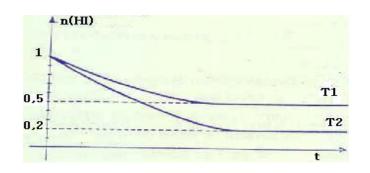


Figure-1

- 1- D'après le graphe de la figure-1, déterminer si la réaction est endothermique, exothermique ou athermique dans le sens direct. Justifier
- 2- Quelle est, aux deux températures T₁et T₂, la composition du mélange à l'équilibre?
- 3- Calculer, aux deux températures, les valeurs K_1 et K_2 de la constante d'équilibre relative à la dissociation de l'iodure d'hydrogène.
- II- Le graphe représenté sur la figure-2, montre qu'à l'instant de date t=10 heures, on a rajouté 1 mole de HI (à la température T₂)
- 1- Dans quel sens évolue le système?. Justifier la réponse
- 2- Quelle sera la composition du nouvel équilibre obtenu
- -en raisonnant sur le graphe?
- -en appliquant la loi d'action de masse?
- 3- On maintient la température constante .Quel est l'effet d'une augmentation de pression sur cet équilibre? Justifier.

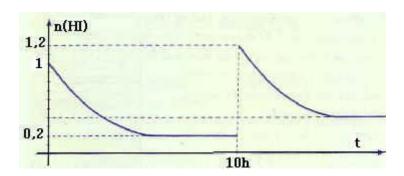


Figure-2

Exercice 8:

Dans une enceinte de volume V = 6L, on introduit **n moles** d'acide iodhydrique HI(g) à l'état gazeux. La température est maintenue constante égale à T. A cette température, il s'établit l'équilibre dynamique suivant :

$$H_2(g) + I_2(g)$$
 \longrightarrow $2HI(g)$

De constante d'équilibre : K = 36

- 1- Quel est le sens d'évolution de la réaction juste après l'introduction de HI dans le récipient ?
- 2- On appelle coefficient de dissociation α , le rapport défini comme suit à l'équilibre :

$$\alpha = \frac{n_{HI}(dissoci\acute{e})}{n_{HI}(initial)}$$

- a- Dresser un tableau d'avancement pour cette réaction
- b- Exprimer les concentrations [HI] ,[I2] et [H2] en fonction de : n , α et V
- c- Appliquer la loi d'action de masse au système chimique en état d'équilibre en exprimant la constante d'équilibre K en fonction de α .
 - d- En déduire la valeur de α
 - e- Calculer, à l'équilibre : [HI], $[I_2]$ et $[H_2]$ sachant que n = 2 moles.
- 3- a- Le sens (2) est endothermique. Comment va se déplacer l'équilibre dynamique si on fait élever la température du système gazeux de T à T 'en laissant sa pression constante?
 - b- On désigne par K' la constante d'équilibre à la température T'. Comparer K et K'
- 4- Que se passe-t-il si à l'équilibre, on augmente la pression du milieu réactionnel a température constante?
- 5- Que se passe-t-il si à l'équilibre, on introduit 0,2 mol de I₂(g) ?