L. Echebbi FERIANA A.S: 2011/2012

SÉRIE Nº: 05

« Dipôle RL »

PROF: TLILI-TOUHAMI

Niveau:BAC Sc

EXERCICE N°1:

On réaliser le circuit électrique ci-contre qui comporte :

- -un générateur délivrant une tension constante E.
- -une bobine d'inductance L = 0.4 H et de résistance r.
- -un résistor de résistance R.

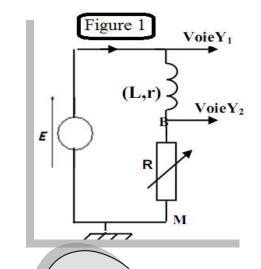
A instant t = 0, on ferme l'interrupteur et on procède à l'acquisition on obtient les courbes de la figure (fig1)

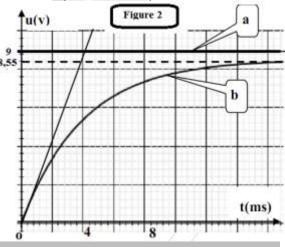
1) Identifier les courbes a et b.

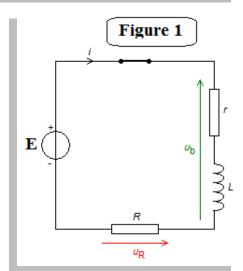
Justifier la réponse et expliquer qualitativement l'allure de la courbe b.

2) Etablir l'équation différentielle vérifiée par la tension u_{BM} aux bornes du résistor.

3) En appliquant la loi des mailles donner les expressions de l'intensité de courant l₀ et de la tension U₀ au bornes du résistor lorsque le régime permanent s'établit.

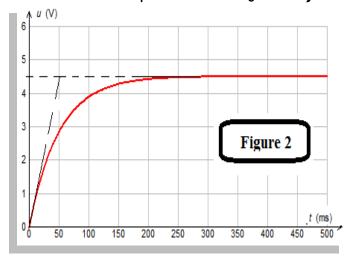

4) En exploitant les courbes : Déterminer : E ; U₀ et la constante du temps τ du dipôle RL.


5) Déterminer R et r.

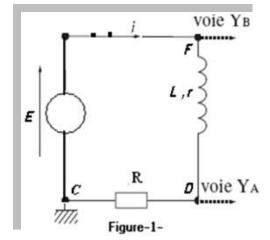

EXERCICE N°2:

Soit le circuit schématisé ci-dessous (figure-1-), renfermant un générateur de tension idéale de force électromotrice E=6V, une bobine d'inductance L et de résistance interne r, un conducteur ohmique de résistance $R=15\Omega$ et un interrupteur K A une date t=0, on ferme l'interrupteur K. Soit i l'intensité de courant traversant le circuit à une date t.

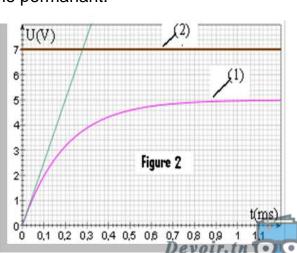
- On veut visualiser sur un oscilloscope à mémoire la tension aux bornes du résistor. Faire un schéma indiquant cette connexion.
- 2) L'enregistrement de l'évolution de cette tension obtenue sur L'oscilloscope est schématisé par l'oscillogramme figure-2-.
 - a) Etablir l'équation différentielle à laquelle obéit la tension $u_{\rm AM}$.



b) Vérifier que la solution de cette équation est de la forme: u_{AM} (t) = $\mathbf{R.I_0}$ (1 - $e^{-\frac{t}{\tau}}$) en donnant les expressions de $\mathbf{I_0}$ et de $\boldsymbol{\zeta}$ en fonction des caractéristiques du circuit.



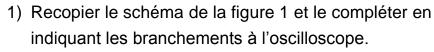
- c) Que représentent les constantes lo et ζ.
- d) A partir de l'oscillogramme de la (figure-2-) Déterminer, les valeurs de l_0 et ζ .
- e) Déduire la valeur de la résistance r et de l'inductance L de la bobine.
- 3) L'enregistrement de la tension aux bornes de la bobine est représenté par l'oscillogramme de la (figure-3) Retrouver, à partir de cet oscillogramme les valeurs de r et L.


EXERCICE N°3:

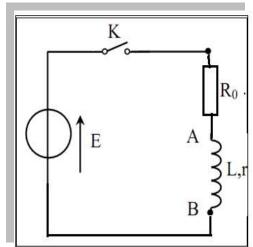
On considère le circuit électrique représenté su la figure 1, comportant un générateur de tension continue, une bobine de résistance r et d'inductance L et une résistance R = 100 Ω

- 1) À la date t = 0, on enregistre l'évolution des tensions visualisées sur les voies Y_A et Y_B lors de la fermeture de l'interrupteur (Figure 1).
 - a) Identifier ces deux courbes (1) et (2) en justifiant.
 - b) Calculer l'intensité I_P lorsque le régime permanant est établit.

- 2) En utilisant les oscillogrammes de la figure 2 :
 - a) Donner la valeur de la tension de la bobine en régime permanant.
 - b) Déduire la valeur de la résistance r de cette bobine.
 - c) Déterminer la valeur de $\frac{di}{dt}$ à l'instant t=0.
 - d) Calculer l'inductance L de la bobine.
- 3) a) Etablir l'équation différentielle satisfaite par l'intensité i(t).


toutes les matières.

- b) La solution de l'équation différentielle est de la forme : $i(t) = Ae^{\alpha t} + B$
- i. Donner les expressions de i(t) et de $u_{bobine} = u_b(t)$ en fonction de R,L,r et de la tension E délivrée par le générateur.
- ii. Calculer puis retrouver graphiquement la valeur de la constante de temps τ du circuit.
- iii. Donner l'allure de la courbe que l'on obtiendrait sur la voie Y_A si on remplace la bobine par une autre d'inductance deux fois plus faible.

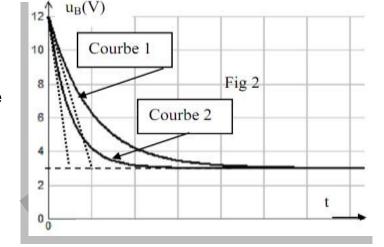

EXERCICE N°4:

On réalise le circuit électrique représenté par la figure 1 comportant, en série, un générateur de tension idéale de f.e.m E, une bobine d'inductance L réglable et de résistance r=8 Ω , un interrupteur K et un résistor de résistance R₀.

A la date t=0 on ferme l'interrupteur K et à l'aide d'un oscilloscope, on visualise la tension u_B aux bornes de la bobine, on obtient les chronogrammes 1 et 2 (figure 2) correspondant respectivement à deux valeurs L₁ et L₂ de L.

2) A l'aide de la loi des mailles, montrer que la tension aux bornes de la bobine u_B(t=0) à la date t=0 est égale à E. Déduire graphiquement la valeur de E.

3)


- a) Comparer les constantes de temps ζ_1 et ζ_2 correspondant respectivement à L_1 et L_2 .
- b) Comparer alors L₁ et L₂.
- c) Sachant que L₁=0,2 H, déduire, à partir du chronogramme, la valeur de L₂.

4)

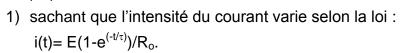
- a) Etablir, en fonction de r, R₀ et E; l'expression de la tension aux bornes de la bobine lorsque le régime permanent s'établit.
- b) En utilisant le graphe, déterminer R₀,

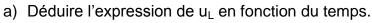
5)

a) Etablir l'équation différentielle régissant l'évolution au cours du temps, de la

tension u_B(t) aux bornes de la bobine d'inductance L₁ et montrer qu'elle s'écrit sous la

forme
$$\frac{du_B}{dt} + \frac{u_B}{\tau} = \frac{rE}{L_1}$$

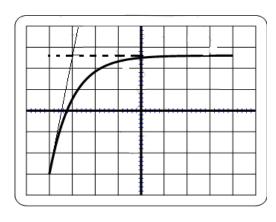

b) La solution de cette équation différentielle est $u_B(t) = Ae^{-\frac{t}{\tau_1}} + B$


Que représentent les constantes A et B?

EXERCICE N°5:

On réalise le montage suivant avec la bobine précédente d'inductance l= 0,5 H et le résistor de résistance R_o montés en série avec une générateur idéal de f.e.m E.

Un dispositif non représenté relié à un ordinateur permet de tracer la courbe suivante donnant les variations de logarithme népérien de la tension de la bobine en fonction du temps ; $Ln(u_I)$.

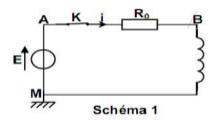


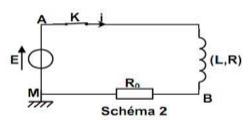
- a) La f.e.m E du générateur.
- b) La résistance Ro.

EXERCICE N°6:

On réalise un circuit électrique comportant en série, un générateur maintenant entre ses bornes un tension constante E de 6V, un interrupteur K, une bobine d'inductance L et de résistance r et un résistor de résistance

 R_0 = 140 Ω . Afin d'étudier l'évolution temporelle de l'intensité i du courant dans le circuit, on utilise un oscilloscope à mémoire. En fermant l'interrupteur K, on obtient l'oscillogramme de la figure ci-contre. Les sensibilités horizontale et verticale étant réglées respectivement à 2ms/div et 1V/div.


2.3


t(ms)

Ln(u_.)

2.3

1º/Préciser parmi les schémas ci-dessous, celui du montage qui a servi pour obtenir l'oscillogramme ci-dessus. Ajouter a ce montage les connexions faites avec l'oscilloscope.

2°/Expliquer qualitativement l'allure de l'oscillogramme obtenu.

3º/a- Montrer que la tension u_{RO} aux bornes du résistor est régie par l'équation différentielle :

$$\frac{du_{R_0}}{dt} + \frac{1}{\tau}u_{R_0} = \frac{R_0}{L}.E \qquad \text{où} \quad \tau = \frac{L}{R_0 + r}$$

b-Cette équation admet comme solution : $u = A.e^{-\alpha t}$ + B

c-Déterminer les constantes A, B et α.

4°/Déterminer graphiquement les valeurs de τ ,r et L.

5°/Déduire l'expression de la tension u_{R0} et celle de l'intensité i du courant.