Lycée Souassi		Professeur: Wissem Fligène
Date: 11/11/2007	Devoir de Contrôle N°1	Epreuve : Mathématiques
Classes: 4 Sc.Inf _{1 et 2}		Durée: 2 heures

⁻ Il est recommandé de soigner la rédaction et la présentation de la copie -

Exercice 1 : (4 points)

Répondre par vrai ou faux sans justifier aux affirmations suivantes :

Le barème est le suivant :

1 point pour la bonne réponse, 0 point pour une absence de réponse et – 0,5 point pour une réponse fausse. Si le résultat global est négatif la note attribuée à l'exercice est amenée à 0

- 1) Si une suite n'est pas majorée alors elle tend vers $+\infty$
- 2) Si une suite est croissante alors elle tend vers $+\infty$
- 3) Si une suite tend vers +∞ alors elle n'est pas majorée
- 4) Si une suite tend vers $+\infty$ alors elle est croissante

Exercice 2: (7 points)

On considère la suite (u_n) définie par $u_0 = 5$ et pour tout $n \in \square$, $3u_{n+1} = u_n + 4$

- 1) Calculer u_1 et u_2
- 2) Démontrer que pour tout $n \in \mathbb{N}$, $u_n \ge 2$
- 3) Montrer que (u_n) est une suite décroissante.
- 4) Montrer que (u_n) est convergente et déterminer sa limite.
- 5) On pose pour tout $n \in \square$, $v_n = u_n 2$.

Montrer que (v_n) est une suite géométrique.

En déduire l'expression de v_n en fonction de n.

6) Soit $S_n = v_0 + v_1 + \dots + v_n$ et $T_n = u_0 + u_1 + \dots + u_n$

Déterminer l'expression de S_n , puis l'expression de T_n en fonction de n.

7) Déterminer $\lim_{n\to\infty} S_n$ et $\lim_{n\to\infty} T_n$

Exercice 3: (3 points)

- 1) En utilisant l'algorithme d'Euclide, déterminer le PGCD de 660 et 1419
- 2) Trouver un couple (u, v) d'entiers relatifs tels que :

$$660u + 1419v = d$$

d désignant le PGCD de 660 et 1419

3) Peut-on trouver deux entiers relatifs x et y tels que 660x + 1419y = 3?

Exercice 4: (3 points)

- 1) Soit a et b deux entiers non nuls. On appelle d leur PGCD. On note a' et b' les entiers définies par a = da' et b = db'. Démontrer que a' et b' sont premiers entre eux
- 2) Déterminer l'ensemble des couples (a,b) d'entiers naturels admettant pour somme 54 et pour PGCD 6.

Exercice 5: (3 points)

- 1) Vérifier les congruences : $2^5 \equiv -1[11]$ et $3^5 \equiv 1[11]$
- 2) En déduire, pour tout $n \in \mathbb{N}$, on a : $2^{10n+5} + 3^{10n+5}$ est divisible par 11