

EXERCICE N°1: (4 PTS)

Pour chacune des questions suivantes une seule des réponses proposées est exacte. Indiquer le numéro de la question et la lettre correspondant à la réponse choisie (aucune justification n'est demandée)

Une réponse correcte vaut 1 point, une réponse fausse ou l'absence de réponse vaut 0 point.

1°) Le conjugué du nombre complexe Z' = 1- iz est égale à :

c) 1-i
$$\overline{z}$$

2°) Si x est un réel et Z = $\frac{1+ix}{-1+ix}$ alors le module de Z est égale à :

a)
$$\sqrt{\frac{1+x^2}{x^2-1}}$$
 b) $\frac{x+1}{x-1}$

b)
$$\frac{x+1}{x-1}$$

3°) La suite $X_n = -3 + (\sqrt{2})^n$ est :

- a) Convergente vers -3 b) Divergente c) convergente vers 0

 4°) La partie réelle de $(1+i)^{2011}$ est égale à :

a)
$$-2^{1005}$$

EXERCICE N°2: (6 PTS)

Soit la suite (u_n) définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{2+u} & \forall n \in \mathbb{N} \end{cases}$

- 1) a)Calculer u_1 et u_2
 - b) Montrer que la suite (u_n) n'est ni arithmétique ni géométrique.
- 2) a)Montrer que : $\forall n \in \mathbb{N} : u_n \succ 0$
 - b) Montrer que la suite (u_n) est décroissante.
 - c) En déduire que la suite (u_n) est convergente et calculer sa limite.
- 3) Soit la suite (v_n) définie par : $v_n = \frac{u_n}{1+u_n} \quad \forall n \in \mathbb{N}$.
 - a) Calculer v_0 et montrer que la suite (v_n) est une suite géométrique.
 - b) Déterminer la limite la suite (v_n) .
 - c) Montrer que : $u_n = \frac{1}{2^{n+1}-1} \ \forall \in \mathbb{N}$.
 - d) Retrouver la limite de la suite (u_n) .

EXERCICE N° 3: (6 PTS)

Dans le plan complexe rapporté à un repère orthonormé $(0, \overrightarrow{u}, \overrightarrow{v})$ on désigne par

A, B, Cet I les points d'affixes respectives :

$$z_A = -2i$$
 , $z_B = 1+i$, $z_C = 4+2i$ et $z_{I=}2$.

- 1°) a/ Placer sur une figure les points A, B, C, et I .
 - b/ Montrer que le point I est le milieu du segment[AC].
- 2°) Montrer que le triangle ABC est isocèle en B.
- 3°) Soit D le symétrique de B par rapport à I.
 - a/ Déterminer l'affixe du point D.
 - b/ Montrer que le quadrilatère ABCD est un losange.

EXERCICE N° 4: (2 PTS)

1°) Déterminer l'ensemble des points M d'affixes z tel que :

$$|\overline{z} - 1 + 2i| = 3$$

2°) Déterminer l'ensemble des points M d'affixes z tel que :

$$\left|\frac{z-2+i}{4i-z}\right| = 1.$$

EXERCICE N° 5: (2 PTS)

- 1°) Déterminer l'entier relatif n pour que $\frac{n+16}{n+4}$ soit un entier.
- 2°) Sachant que : $312 = 62 \times 5 + 2$ déterminer le reste de la division euclidienne de -312 par 5.

Bon travail