REPUBLIQUE TUSIENNE MINISTRE DE L'EDUCATION DE LA FORMATION Lycée Ali Bourguiba Bembla Site: www.matheleve.net SECTION: SCIENCES DE L'INFORMATIQUE EPREUVE: MATHEMATIQUES Mr: Chortani Atef Examen blanc du Bac 2012 COEFFICIENT: 3

Exercice 1(5 points)

Une salle informatique d'un établissement scolaire est équipée de 25 ordinateurs dont 3 sont défectueux. Tous les ordinateurs ont la même probabilité d'être choisis. On choisit au hasard deux ordinateurs de cette salle.

- I) Quelle est la probabilité que ces deux ordinateurs soient défectueux ?
- II) La durée de vie en année d'un ordinateur (c'est-à-dire la durée de fonctionnement avant la première panne), est une variable aléatoire X qui suit une loi exponentielle de paramètre $\lambda > 0$.
- 1) Déterminer λ sachant que p(X > 5) = 0.4
- 2) Dans cette question, on prendra λ =0,18

Sachant qu'un ordinateur n'a pas eu de pannes au cours des 3 premières années, quelle est à 10^{-3} près, la probabilité qu'il ait une durée de vie supérieure à 5 ans ?

- 3) Dans cette question, on admet que la durée de vie d'un ordinateur est indépendante de celle des autres
- a)On considère un lot de 10 ordinateurs.

Quelle est la probabilité que, dans ce lot, l'un au moins des ordinateurs ait une durée de vie supérieure à 5 ans ? On donner une valeur arrondie au millième de cette probabilité.

b) Quel nombre minimal d'ordinateurs doit-on choisir pour que la probabilité de l'événement « l'un au moins d'entre eux à une durée de vie supérieure à 5 ans » soit supérieure à 0,999 ?

Exercice 2(5 points)

Le tableau ci-dessous présente l'évolution du nombre d'internautes en Chine de 2002 à 2009. Les rangs des années sont calculés par rapport à l'année 2000.

Année	2002	2003	2004	2005	2006	2007	2008	2009
Rang de l'année x _i	2	3	4	5	6	7	8	9
Nombre d'internautes y _i (en millions)	60	70	95	100	140	160	250	385

1) Représenter le nuage des points $M_i(x_i; y_i)$ associé à cette série statistique dans le plan muni d'un repère orthogonal en prenant pour unités graphiques :

- *Sur l'axe des abscisses, 1 cm pour 1 an,
- *Sur l'axe des ordonnées, 1 cm pour 20 millions d'internautes (en plaçant 50 à l'origine).
- 2)On cherche dans un premier temps un ajustement affine.
- a)Déterminer une équation de la droite d'ajustement de yen x obtenue par la méthode des moindres carrés (Les coefficients arrondis à l'unité).
- b)En supposant que cet ajustement reste valable pour l'année suivante, donner une estimation, arrondie au million, du nombre d'internautes en Chine en 2010.
- 3)Une étude récente a montré qu'a 2010, on a dépassé les 400 millions d'internautes en Chine. On envisage donc un ajustement exponentiel et on pose z=lnx.
- a) Recopier et compléter le tableau suivant en arrondissant les valeurs de zi au millième :

Xi	2	3	4	5	6	7	8	9
$z_i=lny_i$	4,094							

- b) Déterminer une équation de la droite d'ajustement de z en x obtenue par la méthode des moindres carrés (aucune justification n'est exigée, les calculs seront effectués à la calculatrice et les coefficients arrondis au millième).
- c) En déduire une expression de y en fonction de x.
- d) Donner a laide de cette ajustement une estimation, arrondie au million, du nombre d'internautes en 2012.

Exercice 3(4 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : 3x + 4y = -8

- 1)a)Vérifier que (0, -2) est une solution de l'équation (E)
- b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E)
- 2) Dans le plan rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$. On considère la droite Δ dont une équation cartésienne est : 3x + 4y + 8 = 0 et on désigne par A le point de Δ d'abscisse 0.
- a) Montrer que si M est un point de $\Delta\,$ à coordonnées entières alors AM est un multiple de 5.
- b) Soit N un point de coordonnées (x, y)

Vérifier que AN =
$$\frac{5}{4}|x|$$

c)En déduire que si AN est multiple de 5 alors x et y sont des entiers.

Exercice 4(6 points)

I)Soit la fonction h definie sur \mathbb{R} par h(x)=e^x + 2 - x dans le sens de variation est le suivant :

X	-∞	0	+∞
h			—

- 1)Calculer h(0)
- 2)En deduirre le signe de h sur \mathbb{R}
- II) On considère la fonction f définie sur \mathbb{R} par $f(x) = x + (x-1)e^{-x}$

On désigne par (C) la représentation graphique de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) Montrer que pour tout réel x on a : $f'(x) = e^{-x}h(x)$
- 2) Dresser le tableau de variation de *f*
- 3)a)Montrer que f réalise une bijection de \mathbb{R} sur \mathbb{R}
- b) On déduire que l'équation f(x) = 0 admet dans \mathbb{R} une unique solution α et que α vérifie $0 < \alpha < 0.5$
- 4)a)Montrer que la droite Δ d'équation y=x est une asymptote à la courbe (C) au voisinage de $+\infty$
- b) Etudier la position de la courbe (C) et la droite Δ
- 5)Tracer (C) et Δ
- 6)On designe par ${\cal A}$ l'aire du domaine limité par la courbe (C) l'asymptote Δ est les doites d'equation x=0 et $x=\alpha$
- a) Verifier que pour tout réel x on a: $f(x) x = 1 + e^{-x} f'(x)$
- b) Montrer que $\mathcal{A} = \frac{\alpha^2}{1-\alpha}$