Proposée par Mr

FEHRI BECHIR

2018/2019

Série Fonction Exponentielle

N°1

Exercice n°1:

On considère la fonction h définie $\sup[0,+\infty[$ par $h(x)=(x-2)e^x+2$

- 1)Déterminer les variations de h (on précisera h(0)).
- 2)Montrer qu'il existe une unique réel a de l'intervalle [1,2] tel que h(a)=0. En déduire le signe de h sur $[0,+\infty[$.
- 3) Soit f la fonction définie sur $[0,+\infty[$ par $f(x) = \frac{e^x 1}{x^2}]$
- a/Calculer les limites de f aux bornes de son ensemble de définition.
- b/ Montrer que pour tout réel x strictement positif f' (x) = $\frac{xe^{x}-2e^{x}+2}{x^{3}}$

Dresser le tableau de variation de f.

- c/Montrer que $f(a) = \frac{-1}{a(a-2)}$ et en déduire le signe de f(a).
- 4) Tracer la courbe de f dans un repère orthonormé

Exercice n° 2:

Soit la fonction f : x $\frac{e^x - e^{-x}}{e^x + e^{-x}}$

On désigne par C la courbe de f dans un repère orthonormé (O,\vec{i},\vec{j}).

- 1) Etudier la parité de f.
- 2) a/ Etudier les variations de f.
- b/Tracer C
- 3) Soit $\lambda > 1$ et la droite $\Delta : x = \lambda$.

On note $A(\lambda)$ l'aire de la partie du plan limitée par C, Δ , l'axe des abscisses et l'axe des ordonnées. Calculer $A(\lambda)$.

Exercice n °3:

- I) Soit g la fonction définie sur R par $g(x) = e^x (1-x) + 1$.
- 1) Etudier le sens de variation de g.
- 2) Montrer que l'équation g(x) = 0 admet une unique solution dans l'intervalle [1.27 , 1.28] .on note a cette solution .
- 3) Déterminer le signe de g(x).
- II) Soit f la fonction définie sur R par $f(x) = \frac{x}{e^x + 1} + 2$

On désigne par C la courbe de f dans un repère orthogonal (O, \vec{i}, \vec{j}) .

- 1) Déterminer la limite de f en +∞ et interpréter .
- 2) 2)a/ Déterminer la limite de f en $-\infty$.

- b/ Monter que la droite D d'équation y = x +2 est une asymptote à C
- c/ Etudier la position de C par rapport à D
- 3)a/ Montrer que la fonction dérivée de f a même signe que la fonction g
- b/ Dresser le courbe de variations de f
- 4)Tracer la courbe C ainsi que ses asymptotes et sa tangente au point d'abscisse a .
- III) Pour tout entier naturel n , tel que $n \ge 2$, on note D_n l'ensemble des points M(x,y) du plan , dont les coordonnées vérifient $2 \le x \le n$ et $2 \le y \le f(x)$ et on appelle A_n son aire , exprimée en unités d'aire.
- 1) Faire apparaître D_5 sur la figure.
- 2) Montrer que pour tout réel $x \ge 2$, $\frac{7}{8}$ $xe^{-x} \le \frac{x}{e^x + 1} \le xe^{-x}$
- 3) on pose $I_n = \int_2^n x e^{-x} dx$. A l'aide d'une intégration par parties ,calculer I_n en fonction de n .
- 4) Ecrire une encadrement de A_n en fonction de I_n .
- 5) Montrer que la suite (A_n) est croissante et majorée.

Déterminer la limite de I_n lorsque n tend vers $+\infty$ Que peut -on en déduire pour la limite de A_n lorsque n tend vers $+\infty$?

Exercice n°4:

- 1) 1/ Soit g la fonction définie sur $[0,+\infty[$ par $g(x)=e^x$ -x-1.
- a/ Etudier les variations de g.
- b/ En déduire le signe de g.
- 2/ Soit h la fonction définie sur $[0,+\infty[$ par $h(x)=(2-x)e^x-1$
- a/ Etudier la fonction h et dresser son tableau de variation.
- b/ Montrer que l'équation h(x) = 0 admet une solution unique \propto dans [1,2]
- c/ Donner un encadrement de \propto d'amplitude 10^{-2}
- d/ Précise suivant suivant les valeurs réel positif x le signe de h(x).
- II)Soit f la fonction définie sur $[0,+\infty[$ par $f(x)=\frac{e^x-1}{e^x-x}$ et C sa courbe dans un repère orthonormé.
- 1)a/ Montrer que pour tout $x \neq 0$ on peut écrire $f(x) = \frac{1 e^{-x}}{1 xe^{-x}}$.

En déduire $\lim_{x \to +\infty} f(x)$ et interpréter.

- b/ Montrer que f'(x) = $\frac{h(x)}{(e^x x)^2}$
- c/ Dresser le tableau de variation de f.
- 2)a/ Montrer que pour tout x $f(x) x = \frac{(1-x)g(x)}{e^x x}$
- b/ En déduire la position relative de courbe C et de la droite vΔ d'équation y= x
- 3)a/ Préciser la tangente à C en son point d'abscisse 0 .
- b/ Tracer C

