I.	Ra	р	pe	ls	:

1. Définition :
Soit f une fonction définie sur un intervalle ouvert I contenant x_0
f est dérivable en x_0 , s'il existe un réel ℓ tel que ou encore ou encore
ℓ s'appelle le nombre dérivé de f en x_0 et il est noté
Interprétation graphique : f est dérivable en x_0 si seulement si la courbe $\mathcal C$ de f dans un repère admet au point $M(x_0, f(x_0))$
• T est d'équation :
Un vecteur directeur de T est
$\underline{\text{N.B}}: f'(x_0) = 0$ signifie $\mathcal C$ admet au point $M(x_0, f(x_0))$ une
Application : activité 1 page 40
 2. Dérivabilité à droite – dérivabilité à gauche : Activité 4 page 40 Définitions
✓ Soit f une fonction définie sur un intervalle du type $[x_0, x_0 + h]$ $(h > 0)$
f est dérivable à droite en x_0 s'ilexiste un réel ℓ tel que
ℓ s'appelle le nombre dériv é de f à droite en x_0 et il est noté
✓ Soit f une fonction définie sur un intervalle du type $]x_0 - h, x_0]$ $(h > 0)$
f est d é rivable à gauche en x_0 s'ilexiste un réel ℓ tel que
ℓ s'appelle le nombre dériv é de f à gauche en x_0 et il est noté
$\frac{\text{Th\'eor\`eme}}{\text{Soit }f \text{ une fonction d\'efinie sur un intervalle ouvert contenant }x_0$ $f \text{ est d\'erivable en }x_0 \text{ si et seulement si }$

Interprétation graphique :

Soit $\mathcal C$ la courbe représentative de f dans un repère du plan

	✓	f est dérivable à droite en x_0 si seulement si $\mathcal C$ admet au point $M(x_0,f(x_0))$
•••	•	T_d est d'équation :
	•	Un vecteur directeur de T_d est
	✓	f est dérivable à gauche en $oldsymbol{x_0}$ si seulement si $\mathcal C$ admet au point $M(oldsymbol{x_0},f(oldsymbol{x_0}))$
•••	•	T_g est d'équation :

Interprétation graphique dans le cas d'une fonction non dérivable en x

• Un vecteur directeur de T_g est

Interprétation graphique dans le cas d'une fonction non dérivable en x_0 :				
Si f est dérivable à droite et à gauche en x_0 mais $f'_d(x_0) \neq$				
$f'_{g}(x_0)$ alors \mathcal{C} admet en $M(x_0, f(x_0))$ deux demi tangentes				
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = +\infty \text{ alors } \mathcal{C} \text{ admet en } M(x_0, f(x_0)) \text{ une demi-}$				
tangente verticale dirigée vers				
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = -\infty \text{ alors } \mathcal{C} \text{ admet en } M(x_0, f(x_0)) \text{ une demi-}$				
tangente verticale dirigée vers				
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty \text{ alors } \mathcal{C} \text{ admet en } M(x_0, f(x_0)) \text{ une demi-}$				
tangente verticale dirigée vers				
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = -\infty \text{ alors } \mathcal{C} \text{ admet en } M(x_0, f(x_0)) \text{ une demi-}$				
tangente verticale dirigée vers				

3. Dérivabilité sur un intervalle – Opérations sur les fonctions dérivables :

Rappels

Soit a et $b \in \mathbb{R} / a < b$

- Une fonction *f* est dérivable sur]*a*, *b*[ssi
- f est dérivable sur [a,b[ssi
- f est dérivable sur [a, b] ssi
- *f* est dérivable sur [*a*, *b*] ssi

Théorème

• si f et g sont deux fonctions dérivables sur un intervalle I alors:

f+g ; αf ($\alpha \in \mathbb{R}$); fg et f^n ($n \in \mathbb{N}^* \setminus \{1\}$) sont dérivables sur I et on α :

$(f + g)' = \dots$	$(\alpha f)' = \dots$	$(fg)' = \dots$	$(f^n)' =$

Si de plus f est strictement positive sur I alors \sqrt{f} est dérivable sur I et on a:

$$(\sqrt{f})' = \dots \dots \dots$$

• si de plus g ne s'annule pas sur I alors :

 $\frac{1}{g}$; $\frac{1}{g^n}$ $(n \in \mathbb{N}^*)$ et $\frac{f}{g}$ sont dérivables sur I et on a:

$$\boxed{\left(\frac{1}{g}\right)' = \dots \dots \left[\left(\frac{1}{g^n}\right)' = \dots \right]} = \dots = \boxed{\left(\frac{f}{g}\right)' = \dots \dots \left[\left(\frac{f}{g}\right)' = \dots \dots \right]}$$

Dérivée de fonctions usuelles

<u>Derivée de fonctions usuelles</u>		
f(x) =	intervalle I	f'(x) =
а		
χ		
$x^n (n \in \mathbb{N}^* \setminus \{1\})$		
1		
$\frac{-}{x}$		
$\frac{1}{x^n} \ (n \in \mathbb{N}^*)$		
\sqrt{x}		
$\sin(ax+b)$		
$\cos(ax+b)$		
tan(ax + b)		

Rappels

- Toute fonction polynôme est dérivable sur
- Toute fonction rationnelle est dérivable sur

A faire: activité 6 page 42

- 4. Approximation affine d'une fonction :
- Activité 3 page 40 Rappels

Soit f une fonction définie sur un intervalle ouvert I contenant a si f est dérivable en a alors f(a) + f'(a)h est une approximation affine de f(a + h)

f(a+h) = f(a) + f'(a)h, h voisin de 0

Rai	מט	el	S

A faire: exercice 7 page 51

II. <u>Dérivées successives :</u>

Application: activité 1 page 42

III. <u>Dérivabilité des fonctions composées :</u>

Théorème (admis)

Soit f une fonction définie sur un intervalle I contenant a et g une fonction définie sur un intervalle J contenant f(a)

 $Si \dots \dots \dots alors \ g \circ f$ est dérivable en a Et on a :

$$g \circ f'(a) = g'(f(a)) \times f'(a)$$

Corollaire

Si $\left(\begin{array}{c} \dots & \dots & \dots \\ \dots & \dots & \dots \end{array}\right)$ alors $g\circ f$ est dérivable sur I

Et pour tout x de I, $g \circ f'(x) = g'(f(x)) \times f'(x)$

Application: activité 2 page 43

A faire: exercice 9 page 52

TT 7	TI (.1	.	
IV.	Theoreme	aes	accroisseme	ents finis :

• Activité 1 page 43

mı.	,	`		1 1	ο.	11
I n	eoi	èm	ie c	ie I	KO.	пe

Soit f une fonction continue su	xr[a,b], dérivable sur $a,b[(a < b)$ et vérifiant $f(a) = f(b)$.
Alors il existe un réel c de]a,b	[tel que :

T . /	1 .
Interprétation	granhigiia
<u>mitti bi ttation</u>	grapinguc

Soit C_f la courbe représentative de f dans un repère $(0, \vec{\iota}, \vec{j})$	
Soit A et B les points de C_f d'abscisses respectives a et b	
Le théorème de Rolle permet d'affirmer qu'il existe au	
moins un point N de \mathcal{C}_f où la tangente soit	
, donc parallèle à	

Application: activité 2 page 44

mı / \	•	c .
Indoromo	AC ACCEATICCAMANI	c finic
1 HEOLEINE (es accroissement	.5 111115

Interprétation graphique

Soit C_f la courbe représentative de f dans un repère $(0, \vec{i}, \vec{j})$	
Soit $A(a, f(a))$ et $B(b, f(b))$ les points de C_f	
$\frac{f(b) - f(a)}{b - a} \text{ représente de la droite (AB)}$ $f'(c) représente$	
Le théorème des accroissements finis permet d'affirmer qu'il existe au moins un point M de \mathcal{C}_f d'abscisse c où la	
tangente soit	

Application: activité 4 page 45 A faire: exercice 11 page 52

V. Inégalité des accroissements finis :

Théorème

Theorems
Soit f une fonction continue sur $[a,b]$ et dérivable sur $]a,b[$ $(a < b)$.
s'ilexiste deux réels m et M tels que pour tout $x \in]a,b[$; $m \le f'(x) \le M$ alors on a :
Ou encore

Corollaire

Soit f une fonction dérivable sur un intervalle IS'ilexiste un réel k>0 tel que pour tout x de I, $|f'(x)| \le k$ alors on a:

...

Application : activité 1 page 45 A faire : exercices 17 et 14 page 52

VI. Variations d'une fonction :

Activité 1 page 46
 Théorème

Soit f une fonction dérivable sur un intervalle I et f'sa fonction dérivée

Théorème

Théorème

Soit f une fonction continue sur [a,b]et dérivable sur [a,b] (a < b)

- * Si f est croissante (respectivement strictement croissante)sur]a, b[alors f est
- * Si f est décroissante (respectivement strictement décroissante)sur]a,b[alors f est

Application: activité 3 page 48

VII. <u>Extrema</u>:(Rappels)

Définitions

Soit *f* une fonction définie sur un intervalle I contenant *a*

- * Lorsque f admet un minimum local ou un maximum local en a, on dit que

<u>Théorèmes</u>

Soit *f* une fonction définie sur un intervalle I contenant *a*

1. Si f admet un extrémum local en a alors

...

VIII. Point d'inflexion

Activité 1 page 49

<u>Définition</u>

Soit \mathcal{C} la courbe représentative d'une fonction f dans un repère orthogonal $(0,\vec{\iota},\vec{\jmath})$

Théorème (admis)

Soit f une fonction deux fois dérivable sur un intervalle ouvert contenant a

Si f''s' annule en a, en changeant de signe, alors le point I(a, f(a)) est un point d'inflexionde la courbe représentative de f

Application: activité 2 page 49

A faire: exercice 21 page 53 et QCM + Vrai ou Faux page 50