PROF : B.ANIS

..S.ELKSOUR

DEVOIR DE CONTROLE N°1 MATHEMATIQUES 08-11-2013

4^{ieme}sc-exp₁

DUREE: 2 heures

EXERCICE N°1(3pts)

Dans chacune des questions suivantes une seule réponse est exacte indiquer la .

1) Z_1 et Z_2 sont les solutions complexes de Z^2 -2Z+5=0 . M_1 et M_2 deux points du plan complexe d'affixes respectives Z_1 et Z_2 .O est le point d'affixe 0.ona :

a)Le milieu de [M_1M_2] a pur affixe 2. b)Le triangle O M_1M_2 est équilatérale c) Ré(Z_1)=Ré(Z_2)

- 2) Soient f et g deux fonctions définies sur IR tel que $\lim_{x \to +\infty} f(x) = 1et \lim_{x \to 1} g(x) = 3$ alors :
- a) $\lim_{x \to +\infty} fog(x) = 3$
- b) $\lim_{x \to +\infty} gof(x) = 3$
- c) $\lim_{x \to 1} gof(x) = 3$
- 3)Soit la suite (w_n) définie sur IN par w_0 =1 et w_{n+1} =f (w_n) avec f est une fonction défini et croissante sur IR. Alors :
- a) la suite W est décroissante. b) la suite w est croissante c) On ne peut rien conclure pour le sens de variation de la suite w.

EXERCICE N° 2(5pts)

I)Soit la fonction f définie par $f(x) = \frac{2x^2 + x - 3}{\sqrt{x} - 1}$

- 1) Déterminer D_f le domaine de définition de f.
- 2) Montrer que f est continue sur D $_f$.
- 3) a) Montrer que f(x)=5 admet au moins une solution $\alpha \exists [0,\frac{1}{4}]$
 - c) Montrer que : $\sqrt{\alpha} = \frac{2}{5} \left(\alpha^2 + \frac{1}{2} \alpha + 1 \right)$
- 4)a) f est elle prolongeable par continuité en 1? Justifier
 - b) Montrer que 3 est le minimum de f sur D_f .

EXERCICE N°3(6pts) Le plan est muni d'un repère orthonormé direct (O, \vec{U}, \vec{V}) .

On désigne par A , B ,M₁ et M₂les points d'affixes respectives 2 , 3 ,z₁= $2+i\sqrt{2}$ et z₂= $2-i\sqrt{2}$.

- 1)a) Donner la forme algébrique du nombre complexe $\frac{z_1 3}{z_1}$.
- b) En déduire que le triangle OBM₁ est un triangle rectangle

- 2) On appelle f l'application du plan dans lui-même qui a tout point M d'affixe z associe le point M' d'affixe z' tel que z'=z²-4z+6. On désigne par Γ le cercle de centre A et de rayon $\sqrt{2}$
- a) Déterminer l'antécédent du point O par f.
- b) Vérifier que z'-2= $(z-2)^2$.
- c) Soit M le point de Γ d'affixe z = 2+ $\sqrt{2}$ e^{2i θ} avec $\theta \exists]-\prod,\prod]$. Vérifier que z'=2+2e^{2i θ} et en déduire que le point M' est situé sur un cercle ζ dont on précisera le centre et un rayon.
- 3) Soit le point D d'affixe d=2+ $\frac{\sqrt{2}+i\sqrt{6}}{2}$. Ecrire sous forme exponentielle le nombre complexe d-2.

En déduire que D est situé sur Γ

EXERCICE N°4(6pts) Soit la suite (u_n) défini sur IN par U₀=0 et U_{n+1} = $\frac{2u_n+1}{u_n+2}$.

- 1)Montrer que pour tout entier naturel n on a:0<U_n<1.
- 2)a)Montrer que (un) est croissante.
- b)En déduire qu'elle est convergente et déterminer sa limite.
- 3)a)Montrer que pour tout entier naturel n on : $\left|U_{n+1}-1\right| \leq \frac{1}{2}\left|U_n-1\right|$.
- b)En déduire que $|U_n 1| \le (\frac{1}{2})^n$ pour tout entier n.Retrouver alors la limite de la suite U.
- 4)soit la suite (V_n) définie sur IN par $V_n = \frac{1 u_n}{1 + u_n}$.
- a)Montrer que la suite (V_n) est une suite géométrique de raison $\frac{1}{3}$.
- b)ExprimerV_n puis U_n en fonction de n.
- c)Exprimer $S_n = \sum_{k=0}^{n-1} \frac{1}{u_k + 1}$ en fonction de n puis calculer $\lim_{n \to +\infty} S_n$

BON TRAVAIL