L.S.C.K + L.Kesra 31 / 10 / 2015

<u>Devoir de Contrôle N°1</u> Durée :2h

4^{ème} Sc . Exp

Prof : Bahri .Tmim Bouhani.Allala

Q.C.M: (3 pts): Choisir la bonne réponse sans justification.

1) Soit la suite $U_n = \frac{(-1)^n}{n}$ alors sa limite est :

a) 0

b) -1

c) n'admet pas de limite

2) Si $\lim_{x\to +\infty} f(x) = -\infty$ et $g(x) = x + \sqrt{x^2 - 1}$ alors $\lim_{x\to +\infty} gof(x) = -\infty$

a) +∞

b) -∞

c) (

3) Soit z un nombre complexe non nul d'argument θ ; un argument de $\frac{-1+i\sqrt{3}}{\bar{z}}$ est

a) $\frac{-\pi}{3} + \theta$

- b) $\frac{2\pi}{3} \theta$
- c) $\frac{2\pi}{3} + \theta$

Exercice n°1 : (5.5 pts)

Soit la fonction f définie sur IR par $f(x) = \begin{cases} 1 + x^2 \sin\left(\frac{\pi}{x}\right) & si \ x > 0 \\ x^3 + x + 1 & si \ x \le 0 \end{cases}$

1) a) Montrer que pour tout $x \in]0$, $+\infty[$, on à $: 1 - x^2 \le f(x) \le 1 + x^2$

- b) En déduire $\lim_{x\to 0^+} f(x)$.
- c) Montrer que f est continue en 0.
- d) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$

2) a) Montrer que f est strictement croissante sur $]-\infty$, 0].

b) Montrer que l'équation f(x)=0 admet une unique solution α dans] - 0,7 ; -0,6 [.

3) Monter que : $\alpha = -\frac{1}{\alpha^2 + 1}$

4) Calculer les limites suivantes : $\lim_{x\to 2^-} f(\frac{1}{x-2})$; $\lim_{x\to +\infty} f(\frac{x-1}{x^2+2})$

Exercice n°2:(6 pts)

Le plan complexe est rapporté à un repère orthonormé (o, \vec{u}, \vec{v})

I/ Soit le nombre complexe $\,z=2i+2e^{i\theta}$; $\,\theta\in[0\,$, $\,\pi]$.

- 1) Vérifier que : $z = 4\cos\left(\frac{\pi}{4} \frac{\theta}{2}\right) e^{i(\frac{\pi}{4} + \frac{\theta}{2})}$
- 2) Pour cette question on prend : $\theta = \frac{\pi}{3}$
 - a) Ecrire z sous forme algébrique puis montrer que $|z|^2=8+4\sqrt{3}$.
 - b) Ecrire $\,z\,$ sous forme exponentielle.
 - c) En déduire la valeur exacte de $cos^2(\frac{\pi}{12})$

II/ Dans la suite, on prend $\theta \in [0, 2\pi[$

Soient N , A et I trois points d'affixes respectives : $e^{i\theta}$, -i et 1 .

- 1) a) Vérifier que : $\frac{Z_{\overrightarrow{AN}}}{Z_{\overrightarrow{AI}}} = \sqrt{2}\cos\left(\frac{\pi}{4} \frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$.
 - b) En déduire la valeur de $\, heta\,$ pour lequel le triangle $AIN\,$ soit rectangle en $\,A\,$.
- 2) Soit B le point d'affixe 2i . Déterminer et construire l'ensemble des points M d'affixe z.

Exercice n°3 :(5.5 pts)

Soit la suite réelle (U_n) définie sur IN par $U_0=4$ et $U_{n+1}=\frac{4U_n-3}{U_n}$

- 1) a) Montrer que pour tout $n \in IN$, on à : $U_n \ge 3$
 - b) Montrer que (U_n) est décroissante .
 - c) En déduire que (U_n) est convergente et calculer sa limite ${m \ell}$
- 2) a) Montrer $\, {\rm que}$, pour tout $n \in IN \,$, on à : $U_{n+1} 3 \leq \frac{1}{3} (\, U_n 3 \,)$
 - b) En déduire par récurrence que , pour tout $n \in IN$, on à : $U_n 3 \le (\frac{1}{3})^n$
 - c) Retrouver alors la limite $\boldsymbol{\ell}$ de (U_n) .

- Bon Travail