LYCEE EL FAOUAR-KEBELI	DEVOIR DE CONTROLE N°1
Niveau : 4 ^{ème} année	Durée : 2 Heures
Section : sciences expérimentales	Année scolaire : 2018/2019
Epreuve : Mathématiques	Professeur : El Fekih Nader

Le sujet comporte trois pages numérotées de 1/3 à 3/3

EXERCICE 1 (7 pts)

Soit la fonction **f** définie sur **IR*** par
$$f(\mathbf{x}) = \begin{cases} x^2 \sin\left(\frac{\pi}{x}\right) & si \ x < 0 \\ \frac{\sqrt{x^2 + 1} - 1}{x} & si \ x > 0 \end{cases}$$

1- Montrer que f est continue sur IR*.

2-a-Vérifier que pour tout x < 0, $-x^2 \le f(x) \le x^2$

b-Calculer alors $\lim_{x\to 0^-} f(x)$

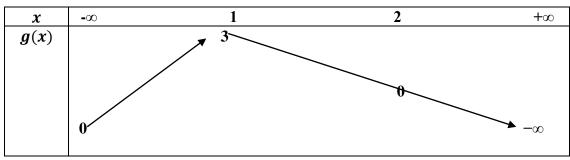
c- Montrer que f est prolongeable par continuité en 0. Donner son prolongement F

d-Vérifier que pour tout $\,x<0\,$; $f\left(\frac{1}{x}\right)=\frac{1}{x}\times\frac{sin(\pi x)}{x}$

 $\text{e-En deduire que } \lim_{x \to -\infty} f(x) = - \infty \left(\text{on pourra remarquer que } \lim_{x \to 0^-} \frac{1}{x} = - \infty \right)$

f-Calculer $\lim_{x \to +\infty} f(x)$, Interpréter graphiquement le résultat

2- Le tableau ci-dessous donne les variations d'une fonction \mathbf{g} continue sur \mathbb{R} vérifiant : $\mathbf{g}(\mathbf{0}) = \mathbf{2}$ et $\mathbf{g}(\mathbf{2}) = \mathbf{0}$



a-Calculer $\lim_{x\to-\infty} f \circ g(x)$ et $\lim_{x\to+\infty} f \circ g(x)$

b-Calculer $\lim_{x\to 2^+} \frac{1}{g(x)}$

c- Montrer que $f\circ g$ est continue sur] $-\infty,2$ [.

d-énoncer le théorème des valeurs intermédiaires

e-Montrer que $\mathbf{F} \circ \mathbf{g}(\mathbf{x}) = \frac{1}{2}$ admet au moins une solution dans [0,2].

EXERCICE 2 (4 pts)

le plan est muni d'un repère orthonormé (O ; \vec{u} ; \vec{v})

On considère dans \mathbb{C} l'équation $\mathbf{E} : \mathbf{z^2 - 4z - 2\bar{z} + 8 = 0}$

1-verifier que $\alpha=1+i\sqrt{3}$ est une solution de E.

2-Soient A, B et C les points d'affixes respectives 2 ; α et $\overline{\alpha}$

a-Vérifier que les points A, B et C appartiennent à un même cercle (*C*) dont on précisera le centre et le rayon

b- Construire les points A, B et C

3-Soit D un point de (\mathcal{C}) tel que $(\overrightarrow{U};\overrightarrow{OD}) \equiv \theta[2\pi]$

Placer le point E d'affixe $\mathbf{z}_{E} = \alpha e^{i\theta}$

4-Soient F et G les milieux respectifs des segments [BD] et [CE]

a-Justifier que
$$z_F = \frac{\alpha}{2} + e^{i\theta}$$
 et $z_G = \frac{\alpha e^{i\theta} + \overline{\alpha}}{2}$

b-Montrer que
$$: \frac{z_G-2}{z_F-2} = \frac{\alpha}{2}$$

c-En déduire que le triangle AFG est équilatéral

EXERCICE 3 (5 pts)

Le plan est muni d'un repère orthonormé direct $(O; \overrightarrow{U}.\overrightarrow{V})$

Soit I le point d'affixe 1, (\mathcal{C}) le cercle de centre 0 et de rayon 1 et (\mathcal{C}') le cercle de centre I et de rayon 1

Soit ${\it z}$ un nombre complexe non nul, ${\it M}$, ${\it M}_{\it 1}$ et ${\it M}_{\it 2}$ les points d'affixes respectives :

$$z$$
; $z_1=1+iz$ et $z_2=1-iz$

1-Vérifier que ${\bf I}$ est le milieu du segment $[{\it M_1 M_2}]$

2-Dans cette question, on prendra $\mathbf{z} = \frac{\sqrt{2}}{2} + \mathbf{i} \frac{\sqrt{2}}{2}$

a-Déterminer la forme trigonométrique de **z**

b-Mettre $\mathbf{z_1}$ et $\mathbf{z_2}$ sous forme trigonométrique

c-Montrer que $\overrightarrow{MM_1}$ et \overrightarrow{U} sont colinéaires

d-Montrer que $M_1 \in (C')$

e-Construire les points \mathbf{M} ; $\mathbf{M_1}$ et $\mathbf{M_2}$ dans le repère $(O; \overrightarrow{\boldsymbol{U}}.\overrightarrow{\boldsymbol{V}})$

3-On suppose que **z**≠-**i**

a-Montrer que :
$$\frac{z_1}{z_2} = \frac{1-z\overline{z}+i(z+\overline{z})}{|z_2|^2}$$

b-En déduire que : $O : M_1$ et M_2 sont alignées si et seulement si Re(z)=0

Et que $\overrightarrow{\mathbf{0M_1}}$ et $\overrightarrow{\mathbf{0M_2}}$ sont orthogonaux si et seulement si $\mathbf{z}\mathbf{\bar{z}}\mathbf{=}\mathbf{1}$

4-a-Montrer que $|\mathbf{z}|$ =1 si et seulement si $|\mathbf{z_1}-\mathbf{z_2}|$ =2

b-En déduire à quel ensemble appartiennent les points $\mathbf{M_1}$ et $\mathbf{M_2},$ lorsque M décrit (\mathcal{C})

EXERCICE 4 (4 pts)

Le plan complexe est muni d'un repère orthonormé (O ; $\overrightarrow{U}.\overrightarrow{V}$)

Soit le nombre complexe $z=i+e^{i\theta}; \theta \in [0;\pi]$

1-Vérifier que
$$z=2\cos(\frac{\pi}{4}-\frac{\theta}{2})e^{i(\frac{\pi}{4}+\frac{\theta}{2})}$$

2-Pour cette question on prend $\theta = \frac{\pi}{3}$

a-Ecrire **z** sous forme algébrique puis montrer que $|\mathbf{z}|^2 = 2 + \sqrt{3}$

b-Ecrire ${\bf z}$ sous forme exponentielle

c-En déduire la valeur exacte de $\cos^2(\frac{\pi}{12})$

3-Soit les points N $(e^{i\theta})$, A (-i) et I(1)

a-Montrer que $\frac{\mathbf{z}_{\overrightarrow{AN}}}{\mathbf{z}_{\overrightarrow{AI}}} = \sqrt{2}\cos(\frac{\pi}{4} - \frac{\theta}{2})e^{i\frac{\theta}{2}}$

b-En déduire la valeur de $\boldsymbol{\theta}$ pour laquelle les vecteurs $\overrightarrow{\textbf{AN}}$ et $\overrightarrow{\textbf{AI}}$ sont orthogonaux