Prof: Fehri Bechir

Devoir de *contrôle* N°1

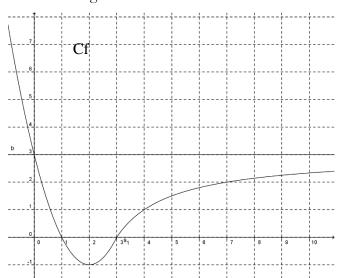
4ème Sc 1&2

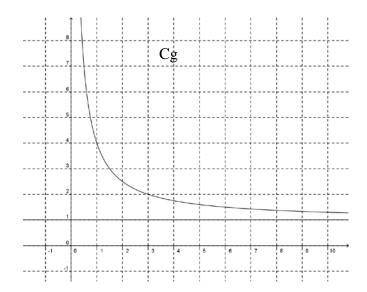
MATHEMATIQUES

Exercice N°1: (5 pts)

On donne la fonctions f définie sur IR , et la fonction g définie sur] 0 ,+ ∞ [dont les courbes représentatives

Cf et Cg ci dessous.





1/Compléter

$$\lim_{x\to-\infty}f(x)=\dots$$

$$\lim_{x \to +\infty} f(x) = \dots$$

$$\lim_{x \to +\infty} g(x) = \dots$$

$$\lim_{x\to +\infty}g(x)=\dots$$

La fonction f admet un minimumen de valeur

2/ Soit la fonction définie sur]- ∞ ,1[\cup]3,+ ∞ [par h(x) = gof(x).

$$h(4) = \dots$$

c- Calculer

$$\lim_{x\to-\infty}h(x)=\dots$$

$$\lim_{x \to +\infty} h(x) = \dots \qquad \lim_{x \to 3^+} h(x) = \dots$$

3/ Déterminer $f(]-\infty,0[) = \dots g(]3,+\infty[) = \dots$

$$h(]-\infty,0[)$$
 $h([0,1[)=$

Exercice No 02(5points)

Soit f la fonction définie sur IR par :

$$f(x) = \begin{cases} \frac{1 + \sqrt{x} \cos x}{x + 2} six \ge 0\\ \frac{x^2}{4(\sqrt{x^2 + 1} - 1)} six < 0 \end{cases}$$

- 1) Montrer que f est continue en 0
- 2) a/ Montrer que pour tout réel positif x on a : $\frac{1-\sqrt{x}}{x+2} \le f(x) \le \frac{1+\sqrt{x}}{x+2}$ b/ En déduire la limite de f(x) en $+\infty$
- 3) Déterminer, <u>en justifiant la réponse</u>, les limites suivantes : $\lim_{x \to 0^+} f(\frac{1}{\sqrt{x}})$ et $\lim_{x \to \frac{x}{2}} f(1 \sin x)$
- 4) a/ Montrer que l'équation f(x) = 0 admet dans $\frac{\pi}{2}, \pi$ une solution qu'on notera α b/ Montrer que $\tan(\alpha) = -\sqrt{\alpha 1}$

Exercice № 03(5points)

1-a/ Vérifier que : $(1+\sqrt{3}+2i)^2 = 2\sqrt{3}+4i(1+\sqrt{3})$

b/ Résoudre alors dans C l'équation : $z^2 - (3 + \sqrt{3})z + (\sqrt{3} + 1)(\sqrt{3} - i) = 0$ et mettre les solutions sous forme algébrique

2-Dans le plan complexe rapporté à un repère orthonormé (unité graphique 2cm) on considère les points A; B et Ω d'affixes respectives $z_A = 1 - i$

$$z_B = 2 + \sqrt{3} + i$$
 et $z_{\Omega} = 2$

Soit ζ le cercle de centre Ω et de rayon 2

a/ Vérifier que $B \in \zeta$

b/ Placer les points A et Ω . Construire alors le point B

3-a/ Ecrire z_A sous forme exponentielle

b/ Ecrire $\frac{z_B}{z_A}$ sous forme algébrique

c/ Montrer que
$$\frac{z_B}{z_A} = (1 + \sqrt{3})e^{i\frac{\pi}{3}}$$

d/ En déduire la forme exponentielle de z_B e/ Déterminer alors la valeur exacte de $\sin(\frac{\pi}{12})$

Exercice No 04(5points)

Soit la fonction f définie sur $[-2, +\infty[$ par : $f(x) = x-1 + \sqrt{x+2}$.

- 1) a) Montrer que f est continue sur $[-2, +\infty[$.
 - b) montrer que f est strictement croissante sur $[-2, +\infty[$.
- 2) a) Montrer que l'équation f(x) = 0 admet dans]-1, 0[une unique solution α .
 - b) Donner un encadrement de α a 10^{-2} près.
 - 3) donner le signe de f(x) sur [-1, 0].
 - 4) a) Montrer que : α^2 3α 1 = 0
 - b) En déduire la valeur exacte de α.
 - 5) Calculer $\lim_{x\to +\infty} f\left(x^2(1-\cos\frac{\pi}{x})\right)$ et $\lim_{x\to 1} f\left(\frac{\cos\frac{\pi}{x}}{x-1}\right)$