N.B: L'épreuve comporte deux pages. Il sera tenu compte du soin apporté à la rédaction. Le barème est approximatif.

Exercice 1 (3,5 pts)

I-Indiquer la réponse exacte :

1)
$$\lim_{x \to +\infty} (x \sin\left(\frac{1}{x}\right))$$
 est égale à :

2) Soit la suite (U) définie sur \mathbb{N} par : $U_n = \frac{2^n - 1}{2^n + 1}$, alors $\lim_{x \to +\infty} (U_n)$ est égale à :

3) $z_0 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ est une racine cubique de :

a/ i b/ -i c/ -14) Si z_1 et z_2 sont les solutions dans \mathbb{C} de l'équation : $-iz^2 + (1+i)z + (1-i) = 0$. Alors $arg(z_1) + arg(z_2) \equiv ...$:

a/ $\frac{3\pi}{4} [2\pi]$

 $\mathbf{b}/\frac{\pi}{4}[2\pi] \qquad \mathbf{c}/-\frac{\pi}{4}[2\pi].$

II-Répondre par vrai ou faux en justifiant la réponse :

> 1) Soit f une fonction définie sur \mathbb{R} et telle que : $\frac{1}{2+r^2} \le f(x) \le \frac{1}{1+r}$; alors : $\lim_{x \to +\infty} x^2 f(x) = 1.$

2) L'équation : $\cos x = x$ admet une unique solution α telle que : $\alpha \in \left[0; \frac{\pi}{2}\right]$.

3) Si a est une solution de l'équation (E): $z^n = 1$, alors \overline{a} est une solution de (E).

Exercice 2 (5 pts)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \begin{cases} 1 + \frac{1 - \cos(x)}{x^2}, & \sin x < 0 \\ 2x + \sqrt{x^2 + \frac{9}{4}}, & \sin x \ge 0 \end{cases}$.

1) a- Montrer que pour tout x < 0, on a : $0 \le f(x) - 1 \le \frac{2}{x^2}$.

b- En déduire $\lim_{x \to a} f(x)$.

2) **a-** $\lim_{x \to +\infty} f(x)$; $\lim_{x \to +\infty} \frac{f(x)}{x}$; et $\lim_{x \to +\infty} (f(x) - x)$.

b- Montrer que : $\lim_{x\to 0^{-}} f(x) = \frac{3}{2}$.

c- f est–elle continue en 0. Conclure.

3) a- Justifier la continuité de $f \sup [0; +\infty]$.

b- Montrer que f est strictement croissante sur $[0; +\infty[$.

c- Déterminer f([0; 2]). En déduire que l'équation : 2f(x) - 7 = 0 admet une unique solution $\beta \in [0; 2]$.

Exercice 3 (4,5 pts)

Le plan complexe est rapporté à un R.O.N.D (O, \vec{u}, \vec{v}) . On donne les points A, B, C et D d'affixes respectives : $z_A = 1 + i$; $z_B = \sqrt{3} + i$; $z_C = 1 - i\sqrt{3}$ et $z_D = (\sqrt{3} + 1) + i(1 - \sqrt{3})$.

- 1) a/ Écrire la forme exponentielle de z_A; z_B et z_C.
 b/ Placer les points A, B et C dans le repère considéré.
 c/Montrer que OBC est un triangle rectangle est isocèle.
- a/ Vérifier que le point C est un point de cercle (C) de centre O et de rayon 2.
 b/ Montrer que la droite (CD) est tangente à (C) en C.
- 3) On donne le nombre complexe : z = z_A³ z_B.
 a/ Donner la forme algébrique de z_A³; puis en déduire la forme algébrique de z.
 b/ Donner la forme trigonométrique de z.
 c/ Déterminer alors les valeurs exactes de: cos (11π/12) et sin (11π/12).

Exercice 4 (3,75 pts)

- 1) Résoudre dans \mathbb{C} l'équation : $z^2 3iz 2 = 0$.
- 2) **a-** Soit $f(z) = z^3 5iz^2 8z + 4i$; Montrer que $z_0 = 2i$ est une solution de f(z). **b-** Trouver le polynôme $g(z) = \alpha z^2 + \beta z + \lambda$ tel que f(z) = (z - 2i)g(z).
 - **c-** Résoudre alors l'équation f(z) = 0.
- 3) Soit θ un réel de]0; $2\pi[$ et soit l'équation : $(E_{\theta}): z^2 + i(e^{i\theta} 2)z + e^{i\theta} 1 = 0$.
 - **a-** Trouver une racine carrée du nombre complexe $-e^{i2\theta}$.
 - **b-** Résoudre alors l'équation (E_{θ}) .

Exercice 4 (3,25 pts)

Soit (u_n) la suite définie sur \mathbb{N} par : $u_n = \frac{n+1}{4^n}$, $n \ge 0$.

- 1) **a-** Montrer que $\forall n \in \mathbb{N}, \frac{u_{n+1}}{u_n} \le \frac{1}{2}$.
 - **b-** En déduire que $\forall n \in \mathbb{N}, \ 0 \le u_n \le \left(\frac{1}{2}\right)^n$.

Calculer alors : $\lim_{n\to+\infty} (u_n)$.

c- Soit (S_n) la suite définie sur \mathbb{N} par : $S_n = \sum_{k=0}^n u_k$.

Montrer que (S_n) est une suite croissante et déduire que : $\forall n \in \mathbb{N}, S_n \leq 2$.