Prof : Dhahbi . A	Devoir de synthèse n° 1	Section: 4 ^{eme} Sciences. exp
L.A.A	Mathématique	Durée : 3h ; Date : 11 / 12/ 2002

EXERCICE Nº 1:

Soit θ un réel de]0, π [. On considère dans C l'équation (E): $z^3 - 4z^2 + (5 - e^{2i\theta})z - 2 + 2e^{2i\theta} = 0$.

- 1°/ a) Vérifier que $z_0 = 2$ est une solution de l'équation (E).
 - b) Trouver alors les deux autres solution z_1 et z_2 de l'équation (E) avec (Im z_1) > 0.
 - c) Ecrire z_1 et z_2 sous forme exponentielle.
- 2°/ Le plan complexe P est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}). On considère les points A, M_1 et M_2 d'affixes respectives 2, $1 + e^{i\theta}$ et $1 e^{i\theta}$.
 - a) Montrer que M₁ et M₂ sont symétriques par rapport à un point fixe I que l'on précisera.
 - b) Déterminer l'ensemble décrit par les points M_1 et M_2 quand θ varie.
- $3^{\circ}/$ On suppose dans cette question que $\theta\neq\frac{\pi}{2}$. Montrer que le quadrilatère $OM_{1}AM_{2}$ est un rectangle non carré .

EXERCICE N°2:

Soit f(x) =
$$2 - \sin \frac{x}{2}$$
, x \in [-\pi, \pi].

- 1°/ a) Montrer que f est une bijection de $[-\pi, \pi]$ sur [1, 3].
 - b) Calculer $f^{-1}(\frac{5}{2})$, $f^{-1}(2)$.
- $2^{\circ}\!/\;a)$ Montrer que pour tout $x\!\in\!]\;1$, 3 [.
 - b) Calculer $(f^{-1})'(\frac{5}{2}), (f^{-1})'(2)$.
 - c) Montrer que pour tout $x \in]1, 3[, (f^{-1})'(x)] = \frac{-2}{\sqrt{-x^2+4x-3}}$.
- 3°/ Dans Le plan complexe P rapporté à un repère orthonormé direct (O, \vec{i} , \vec{j}); Tracer C_f et C_{f-1} .

EXERCICE N°3:

On considère la fonction f définie par f (x) = 2 (x - $\frac{2}{x}$ + $\frac{1}{x^3}$).

- 1°/ Montrer que f est impaire et dresser son tableau de variation .
- 2°/ On note (C) la courbe représentative de f dans un repère orthonormé direct (O , \vec{i} , \vec{j}) .
 - a) Déterminer les asymptotes à (C) et étudier la position relative de (C) par rapport à son asymptote oblique .
 - b) Déterminer les points d'inflexion de (C).
 - c) Construire (C).
- 3° / Soit g la fonction définie sur] 0 , π [par g (x) = f (sinx) .
 - a) Etudier g et dresser son tableau de variations.
 - b) Montrer que la courbe (Γ) de g possède Δ : $x=\frac{\pi}{2}$ comme axe de symétrie .
 - c) Construire (Γ).

Prof : Dhahbi . A	Devoir de contrôle n° 1	Section: 4 ^{eme} Sc.exp
L.A.A	Mathématique	Durée : 2h ; Date : 02 / 11 / 2001

EXERCICE N°1:.

Le plan complexe P est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}).

On donne les points A (2i), B(2) et I = A * B (unité: 2cm)

On considère la fonction f qui à tout point M distinct de A, d'affixe z, associe le point M' d'affixe z' tel que z' = $\frac{2z}{z-2i}$.

- 1°/ a) Montrer que f admet comme point invariants le point O et un deuxième point dont on précisera l'affixe.
 - b) Déterminer les images par f des points B et I.
- 2°/ Soit M un point quelconque distinct de A et de O .

Etablir que :
$$\begin{cases} (\vec{u}, \overrightarrow{OM}) = (\overrightarrow{MA}, \overrightarrow{MO}) + 2k\pi, k \in \mathbb{Z} \\ OM' = 2 \frac{MO}{MA} \end{cases}$$

 3° / Soit Δ la médiatrice de [OA];

Montrer que les transformations par f des points de (Δ) appartiennent à un cercle (C) que l'on précisera 4°/ Soit (Γ) le cercle de diamètre [OA], privé du point A, Montrer que les transformés par f des points de (Γ) appartiennent à une droite (D) que l'on précisera.

 5° / Tracer (Δ), (Γ), (C) et (D) sur une même figure.

EXERCICE N°2:

Soit
$$z = -1 - i$$
; $z' = -1 + i\sqrt{3}$; $Z = \frac{z}{z'}$.

1°/ Ecrire chacun des nombres complexes z, z' et Z sous forme trigonométrique.

$$2^{\circ}$$
/ En déduire $\cos \frac{7\pi}{12}$, $\sin \frac{7\pi}{12}$.

EXERCICE $N^{\bullet}3$:

Déterminer le domaine de définition de f et étudier la limite de f en x_0 dans chacun des cas suivants :

a) f (x) =
$$\frac{\sqrt{1+x}-\sqrt{1-x}}{\sin x}$$
, $x_0 = 0$

a)
$$f(x) = \frac{\sqrt{1+x}-\sqrt{1-x}}{\sin x}$$
, $x_0 = 0$
b) $f(x) = \frac{mx^2+(m-1)x-1}{x^2-1}$, $x_0 = +\infty$ puis $x_0 = 1$; discuter suivant le paramètre réel m.

c) f(x) =
$$\frac{x\sin x}{1-\cos x}$$
, $x_0 = 0$

EXERCICE N°4:

Soit la fonction $f: IR \rightarrow IR$

$$x \rightarrow \begin{cases} f(x) = \sqrt{4-x^2} & \text{si } x \in [-2, 2] \\ f(x) = \frac{2x^2 + 8x + 8}{x^2 - 4} & \text{si } x < -2 \\ f(x) = x^2 - 2x + 2 & \text{si } x > 2 \end{cases}$$

Etudier la continuité de f sur son domaine de définition.

Prof : Dhahbi . A	Devoir de contrôle n° 1	Section: 4 ^{eme} Maths 2
L.A.A	Mathématique	Durée : 2h ; Date : 03 /11 / 2004

EXERCICE N°1:.

Le plan complexe P est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}).

On donne les points A et B d'affixes respectives 1 et -i,

On considère la fonction f qui à tout point M distinct de B, d'affixe z, associe le point M' d'affixe z'

tel que z' =
$$\frac{1-z}{1-iz}$$
.

- 1°/ Déterminer l'ensemble E₁ des points M pour lequel z' soit réels.
- 2°/ Déterminer l'ensemble E_2 des points M pour lequel |z'| = 1.
- 3°/ a) Montrer que \forall z \in C \{ -i }, on a : z' + 1 = $\frac{-1+i}{z+i}$.
 - b) En déduire que BM . BM' = $\sqrt{2}$ et $(\vec{u}, \vec{BM}) + (\vec{u}, \vec{BM'}) \equiv \frac{3\pi}{4} [2\pi]$.
 - c) Montrer que si M appartient au cercle C de centre B et de rayon 1 alors le point M' appartient à un cercle C' que l'on déterminera .
 - d) Montrer que si M appartient à la droite D d'équation y = x 1 alors le point M' appartient à une droite D' que l'on déterminera

Exercice N°1

A/ Soit f la fonction par f (x) =
$$\sqrt{\cot g \frac{\pi}{2} x}$$
, x \in [0,1]

- 1°/a) Etudier la derivabilité de f en 1
 - b) Calculer f'(x) pour $x \in]0,1[$
 - c) Montrer que f réalise une bijection de]0,1] sur un intervalle J que l'on precisera.
- 2°/ Construire dans un repère R (o, \vec{i} , \vec{j}) les courbes C_f et C_f^{-1} [Ind : calculer $f(\frac{1}{2})$]
- 3°/a) Montrer que f⁻¹ est derivable sur]0, + ∞ [et x \in]0, + ∞ [,(f⁻¹)'(x) = $\frac{4x}{\pi(1+x_4)}$
 - b) Montrer que f^{-1} est derivable en 0^+ et que (f^{-1}) 'd $^{(0)} = 0$

$$4^{\circ}/ \text{ On pose } C(x) = f^{-1}(x) + f^{-1}(\frac{1}{x}), x \in]0, +\infty [$$

- a) Montrer que C est derivable sur]0 ,+ ∞ [et calculer ℓ '(x)
- b) En deduire que $\forall x \in]0, + \infty[, (x) = 1]$

$$5^{\circ}/\text{ On pose g }(x) = \frac{1}{f_{-1}(x)}, x \in]0, +\infty[$$

Etudier les variations de g et tracer (g)

B/ Soit la suite (U_n)definie par

Prof : Dhahbi . A	Devoir de contrôle n° 2	Section: 4 ^{eme} Sciences. exp
L.A.A	Mathématique	Durée : 2h ; Date : 10 / 02/ 2005

EXERCICE:

L'espace E est rapporté à un repère orthonormé R (o , \vec{i} , \vec{j} , \vec{k}) .

On considère les plans P: 2x - y + 2z - 5 = 0; P': 2x + 2y - z - 4 = 0.

- 1°/ Montrer que les plans P et P' sont perpendiculaires .
- 2° / a) Calculer les distances d (A , P) et d (A , P') avec A (1, 2, -1).
 - b) En déduire la distance du point A à la droite D intersection de P et P'.
- 3°/ Déterminer un système d'équations paramétriques de la droite (D).
- 4°/ a) Déterminer une équation cartésienne du plan Q passant par A et perpendiculaire à la droite (D).
 - b) En déduire les coordonnées du projeté orthogonal H du point A sur la droite (D).
- c) Déterminer , par ses coordonnées , le point M de la droite (D) pour lequel la distance AM est minimale .

PROBLEME:

- A Soit g la fonction numérique définie sur] 0, + ∞ [par g (x) = Log (x) + x 3.
 - 1°/ Etudier les variations de g.
 - $2^{\circ}/a$) Montrer que l'équation g (x) = 0 admet une solution unique α dans l'intervalle $]0, +\infty$ [.
 - b) Vérifier que : 2,20 $\prec \alpha \prec 2,21$.
 - 3° / Etudier le signe de g (x) sur] 0 , + ∞ [.
- B- On considère la fonction numérique f définie sur] 0, + ∞ [par f (x) = (1 $\frac{1}{x}$) (Log x 2).

On désigne par (C) la courbe représentative de f dans le plan rapporté à un repère orthonormé (O, \vec{i} , \vec{j}).

- 1° / Déterminer les limites de f à droite en 0 et en $+ \infty$.
- 2° / Montrer que f est dérivable sur $]0, +\infty$ [et calculer f'(x).
- 3°/a) Etudier les variations de f.
 - b) Exprimer Log (α) en fonction de α .
 - c) Montrer que f (α) = $\frac{(\alpha 1)^2}{\alpha}$.
 - d) En déduire un encadrement de f (α)d'amplitude 2 . 10 -2
- $4^{\circ}/a$) Etudier le signe de f (x) sur $]0, +\infty$ [.
 - b) Etudier la branche infinie de la courbe (C).
 - c) Tracer la courbe (C).
- C- Soit F la primitive de f sur $]0, +\infty$ [qui s'annule pour x = 1.

On appelle (Γ) la courbe représentative de F dans le plan rapporté à un repère orthonormé (O , \vec{i} , \vec{j}) .

- 1°/a) Sans calculer F (x), étudier le sens de variation de F sur $]0, +\infty$ [.
 - b) Que peut on dire des tangentes à en ses points d'abscisse 1 et e².
- 2°/ Vérifier que pour tout x strictement positif, F(x) = $-\frac{1}{2}$ (Logx)² + (x + 2) Logx 3x + 3.
- 3°/ a) Déterminer la limite de F en 0⁺
 - b) Montrer que, pour tout x > 1, $F(x) = x \text{ Log } x (1 \frac{1}{2} \cdot \frac{Logx}{x} + \frac{2}{x} \frac{3}{Logx}) + 3$.

En déduire la limite de F en $+\infty$.

- c) Dresser le tableau de variation de F.
- d) Etudier la branche infinie de la courbe (Γ)
- e) Tracer la courbe (Γ) sur le même graphique que (C) .

Prof : Dhahbi . A	Devoir de synthèse n° 1	Section: 4 ^{eme} Sc. exp et tech
L.S.A	Mathématique	Durée : 3h ; Date : 13 / 12/ 2002

EXERCICE $N^{\bullet} 1$:

Soit θ un réel de] 0 , π [. On considère dans C l'équation (E) : $z^3 - 4z^2 + (5 - e^{2i\theta})z - 2 + 2e^{2i\theta} = 0$. 1°/ a) Vérifier que $z_0 = 2$ est une solution de l'équation (E) .

- b) Trouver alors les deux autres solution z_1 et z_2 de l'équation (E) avec (Im z_1) > 0.
- c) Ecrire z_1 et z_2 sous forme exponentielle.

 2° / Le plan complexe P est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}).

On considère les points A, M_1 et M_2 d'affixes respectives 2, $1 + e^{i\theta}$ et $1 - e^{i\theta}$.

- c) Montrer que M₁ et M₂ sont symétriques par rapport à un point fixe I que l'on précisera.
- d) Déterminer l'ensemble décrit par les points M_1 et M_2 quand θ varie.

 $3^\circ\!/$ On suppose dans cette question que $\theta\neq\frac{\pi}{2}$. Montrer que le quadrilatère OM_1AM_2 est un rectangle non carré .

EXERCICE N°2:

Soit f(x) = $2 - \sin \frac{x}{2}$, x \in [-\pi, \pi].

- $1^{\circ}/$ a) Montrer que f est une bijection de [- π , π] sur [1 , 3] .
 - b) Calculer $f^{-1}(\frac{5}{2})$, $f^{-1}(2)$.
- $2^{\circ}/a$) Montrer que pour tout $x \in]1$, 3 [.
 - b) Calculer $(\ f^{\text{--}1})'(\frac{5}{2}\)\ ,(\ f^{\text{--}1})'(\ 2\)\ .$
 - c) Montrer que pour tout $x \in]1, 3[, (f^{-1})'(x)] = \frac{-2}{\sqrt{-x^2+4x-3}}$.
- 3°/ Dans Le plan complexe P rapporté à un repère orthonormé direct (O , \vec{i} , \vec{j}) ; Tracer C_f et C_{f-1} .

EXERCICE N°3:

Soit f la fonction numérique définie par : f (x) = x + $\sqrt{x^2-2x}$.

- 1°/ Montrer que la fonction f est définie sur] $-\infty$, 0] \cup [2 , $+\infty$ [.
- $2^{\circ}\!/$ Etudier la continuité de f sur] ∞ , 0] \cup [2 , + ∞ [.
- 3°/ Etudier la dérivabilité de f en tout point de] - ∞ , 0] \cup [2 , + ∞ [. Interpréter géométriquement le résultat obtenue .
- 4°/ a) Etudier les variations de f.
 - b) Tracer la courbe représentative (C) de f dans un repère orthonormé R (O, \vec{i} , \vec{j}).
- $5^{\circ}/\ a$) Montrer que f réalise une bijection de [2 , $+\infty$ [sur un intervalle J que l'on précisera .
 - b) Expliciter: $f^{-1}(x)$ pour $x \in J$.
 - c) Tracer la courbe représentative (C') de f⁻¹ dans le même repère (O, \vec{i} , \vec{j}).

Prof : Dhahbi . A	Devoir de contrôle n° 3	Section: 4 ^{eme} Economie et gestion
L.P.A	Mathématique	Durée : 2h ; Date : 29 / 04/ 2003

EXERCICE N°1:

Une urne contient cinq boules rouges , une boule noire et trois boules blanches .Les boules sont indiscernables au toucher .

On tire simultanément et au hasard trois boules de l'urne.

- 1°) Calculer la probabilité des évènements suivants :
 - A: « n'obtenir aucune boule rouge »
 - B: « obtenir une boule de chaque couleur »
 - C: « obtenir au moins une boule rouge »
- 2°/ Soit X l'aléa numérique qui associe , à chaque tirage de trois boule de l'urne le nombre de boule rouges obtenues .
 - a) Déterminer la loi de probabilité de X.
 - b) Calculer son espérance mathématique E(X), sa variance et son écart type.
 - c) Déterminer et représenter sa fonction de répartition F.
- 3°/ On répète ce tirage 5 fois de suite en remettant à chaque fois les trois boules tirées dans l'urne .

Quelle est la probabilité de l'évènement suivant :

« lors de 5 tirages deux fois seulement, on n'obtient aucune boule rouge »

EXERCICE Nº 2:

- I Soit la fonction g définie sur l'intervalle $]0, +\infty$ [par : g (x) = $x^2 2Logx + 2$.
 - a) Etudier les variations de la fonction g
 - b) Calculer g (1) et en déduire le signe g (x) pour tout x de l'intervalle $]0, +\infty$ [.
- **II** Soit la fonction f définie sur l'intervalle $]0, +\infty$ [par : f(x) = $\frac{2Logx}{x}$ + x 1.

Soit (C) la courbe représentative de f dans le plan muni d'un repère orthonormé (O , \vec{i} , \vec{j}).(unité :2cm) 1°/ a) Déterminer lim f(x) .

- b) Calculer $\lim_{x\to 0^+} f(x)$, interpréter géométriquement le résultat obtenu
- c) Montrer que, pour tout réel x strictement positif, f'(x) = $\frac{g(x)}{x^2}$.
- d) En déduire le signe de f'(x) puis dresser le tableau de variations de la fonction f.
- $2^{\circ}/a$) Montrer que la droite D d'équation y = x 1 est une asymptote oblique à la courbe (C) au voisinage de $+\infty$.
 - b) Etudier la position de (C) par rapport à D .
 - c) Tracer (C) la courbe représentative de f et D dans le repère (O, i, j).
- 3°/ a) Montrer que f est une bijection de l'intervalle] 0, + ∞ [sur un intervalle J à préciser .
 - c) Tracer la courbe représentative (C') de f $^{-1}$ dans le même repère (O, \vec{i} , \vec{j}).
 - 4° / Soit la fonction h définie sur l'intervalle] 0 , + ∞ [par : h (x) = $(Logx)^2$.
 - a) Déterminer la fonction dérivée de h.
 - b) Calculer l'aire de la partie du plan limité par (C), D et les droites d'équations x = 1 et x = 2

Prof : Dhahbi . A	Devoir de synthèse n° 3	Section: 4 ^{eme} Economie et gestion
L.S.A	Mathématique	Durée : 3h ; Date : 13 / 05/ 2003

EXERCICE Nº 1: (6 points)

On considère, dans C l'ensemble des nombres complexes, l'équation:

$$(E): z^3 - (5+i)z^2 + 4(2-i)z - 12 + 4i = 0$$

- 1°/ a) Vérifier que $z_0 = -2i$ est une solution de l'équation (E).
 - b) Déterminer les nombres complexes a, b, c telque, pour tout nombre complexe z:

$$z^{3}$$
 - (5 + i) z^{2} + 4(2 - i) z - 12 + 4i = (z + 2i) (a z^{2} + b z + c) = 0.

- c) Résoudre l'équation (E).
- 2°/ Dans le plan complexe rapporté à un repère orthonormé (0, \vec{u} , \vec{v}), on considère les points A, B, C et I d'affixes respectives : $z_A = -2i$; $z_B = 1+i$; $z_C = 4+2i$ et $z_I = 2$.
 - a) Placer sur une figure les points A, B, C et I.
 - b) Vérifier que I est le milieu du segment [AC].
- 3°/ a) Calculer les affixes u et u' des vecteurs \overrightarrow{BA} et \overrightarrow{BC} .
 - b) Montrer que le triangle ABC est un triangle isocèle de sommet principale B.
- 4°/ Soit D le symétrique de B par rapport au point I.
 - a) Déterminer l'affixe z_D de point D
 - b) Montrer que le quadrilatère ABCD est un losange.

EXERCICE N°2 (6points)

Une urne contient : cinq boules rouges numérotés : -1, -1, 1, 1, 0.

et quatre boules blanches numérotés : -1, 1, 1, 1.

Les boules sont indiscernables au toucher.

Une épreuve consiste à tirer simultanément et au hasard trois boules de l'urne.

1°/ Calculer la probabilité des évènements suivants :

A : « obtenir trois boules de même couleurs »

B: « obtenir une seule boule portant le nombre -1 »

2°/ Soit l'événement C: « obtenir un produit des nombres marqués , égal à 0 »

Montrer que p (C) =
$$\frac{1}{3}$$

- 3°/ Soit X l'aléa numérique qui associe , à chaque tirage de trois boules de l'urne la somme des nombres marqués sur les trois boules .
 - a) Déterminer la loi de probabilité de X.
 - b) Calculer son espérance mathématique E(X), sa variance et son écart type.
- 3°/ On répète ce tirage 4 fois de suite en remettant à chaque fois les trois boules tirées dans l'urne.

Soit Y l'aléa numérique qui associe le nombre de réalisations de l'événement C au cours de ce quatre épreuves .

- a) Déterminer la loi de probabilité de Y.
- b) Calculer son espérance mathématique E(Y), sa variance et son écart typ

PROBLEME : (8points)

A – Soit la fonction définie sur IR par :

$$f(x) = x(1-Log(x))$$
 si x > 0
 $f(0) = 0$

A – Soit la fonction définie sur IR par : $\begin{cases} f(x) = x(1 - \text{Log}(x)) & \text{si } x > 0 \\ f(0) = 0 & \text{on désigne par } (C) \text{ sa courbe représentative dans un repère orthonormé } (O, \vec{i}, \vec{j}). \end{cases}$

- 1°/ Etudier la continuité et la dérivabilité de f en 0.
- $2^{\circ}/a$) Déterminer $\lim_{x \to a} f(x)$
 - b) Etudier les variations de la fonction f et dresser son tableau de variation .
- 3°/ a) Ecrire une équation cartésienne de la tangente T à (C) au point d'abscisse e .
 - b) Montrer que la courbe (C) admet au voisinage de $+\infty$ une branche parabolique de direction(O j)
 - c) Soit g (x) = f (x) x. Etudier les variations de g sur \mathbb{R}^+ puis en déduire le signe de g sur \mathbb{R}^+
 - d) Construire la courbe (C) de f , dans un repère orthonormé (O, \vec{i} , \vec{j}).
- 5°/ Soit h la restriction de f à [1, $+\infty$ [.
 - a) Montrer que f réalise une bijection de [1 , $+\infty$ [sur un intervalle J à préciser .
 - b) Etudier la dérivabilité de h⁻¹ sur J et calculer (h⁻¹)'(0)
 - c) Construire la courbe de (C') de h⁻¹ dans le repère orthonormé (O, \vec{i} , \vec{j}).
- 6°/ a) Calculer en intégrant par parties : $I_{\alpha} = \int_{\alpha}^{\epsilon} x Logx \, dx$ où $\alpha \in IR*_{+}$.
 - b) Calculer : $\lim_{\alpha \to 0} I_{\alpha}$
 - c) En déduire l'aire du domaine limité par la courbe (C) et l'axe des abscisses.
 - $7^{\circ}/$ Soit U la suite définie sur IN par : $\left\{ \begin{array}{l} U_0 = \frac{1}{2} \\ U_{n+1} = f \ (\ U_n \) \\ a) \end{array} \right.$ a) Montrer que pour tout n de IN on a : $0 < U_n \ \leq 1$

 - b) Montrer que U_n est croissante.
 - c) En déduire que U_n est convergente et calculer sa limite .

Prof : Dhahbi . A	Devoir de contrôle n° 2	Section: 4 ^{eme} Science. exp
L.P.A	Mathématique	Durée : 2h ; Date : 02 / 02/ 2004

EXERCICE:

Partie A:

Soit g la fonction définie sur $I =]0, +\infty [$, par : $g(x) = x^2 - 2 + Log(x)$.

- 1°/ Etudier les variations de la fonction g
- 2°/ Montrer que l'équation g (x) = 0 admet dans IR_{\perp}^* une solution unique α .
- 3° / Vérifier que : α ∈] 1,31 ; 1,32 [
- 4° / En déduire le signe de g (x) sur I =] 0, + ∞ [.

Partie B:

Soit f la fonction définie sur] 0, + ∞ [, par : f(x) = x + 1 + $\frac{1 - Logx}{x}$.

On désigne par C sa courbe représentative dans un repère orthonormé (O , \vec{i} , \vec{j}) .

- 1°/ a) Montrer que $\lim_{x\to 0^+} f(x) = +\infty$
 - b) Interpréter ce résultat géométriquement .
- $2^{\circ}/$ a) Déterminer $\lim_{x \to +\infty} f(x)$.
 - b) Montrer que f est dérivable sur] 0, $+\infty$ [et déterminer f'(x).
 - c) Vérifier que f'(x) à le même signe que g(x).
 - d) En déduire le tableau de signe de f.
 - e) Vérifier que : $f(\alpha) = 2\alpha + 1 \frac{1}{\alpha}$.
- $3^{\circ}/a$) Montrer que la droite Δ d'équation y = x + 1 est une asymptote oblique à la courbe (C).
 - b) Montrer que la droite Δ coupe (C) en un point A que l'on déterminera.
 - c) Etudier la position de la courbe (C) par rapport à Δ .
- 4° / Déterminer le point de la courbe (C) où la tangente (T) est parallèle à Δ
- 5° / Construire la courbe représentative (C) de f dans un repère orthonormé (O , i , j) .
- 6°/ Déterminer une primitive F de f sur $]0, +\infty$ [qui s'annule en 1.

Partie C:

- 1°/ Soit la fonction φ définie sur] 0, + ∞ [par $\varphi(x) = f(x) x$.
 - a) Etudier les variations de φ .
 - b) Déduire que pour tout x de] 0, $+\infty$ [, $\varphi(x) > \frac{1}{2}$.
- 2° / Soit la suite u définie sur IN par $u_0 = 2$ et pour tout n de IN, $u_{n+1} = f(u_n)$.
 - a) Montrer que pour tout n de IN, $u_n > \alpha$.
 - b) Montrer que la suite u est strictement croissante.
 - c) Montrer que, pour tout n de IN, $u_{n+1} > \frac{1}{2} + u_n$.
 - d) Déduire que pour tout n de IN , $u_n > \frac{n}{2} + 2$. Déterminer alors $\lim_{n \to +\infty} u_n$.

Prof : Dhahbi . A	Devoir de synthèse n° 1	Section : 4 ^{eme} Economie et Gestion
L.S.A	Mathématique	Durée : 3h ; Date : 09 / 12/ 2002

EXERCICE Nº 1 : (6 points)

- 1°/ a) Vérifier que : $(\sqrt{3} 3i)^2 = -6 6\sqrt{3}i$.
 - b) Résoudre dans C, l'équation (E): $z^2 (\sqrt{3} + i)z + 2 + 2\sqrt{3}i = 0$.
- 2°/ Le plan complexe P est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}). On considère les points A et B d'affixes respectives 2 i et $\sqrt{3}$ i .
 - a) Ecrire sous forme trigonométrique les nombre complexes 2i et $\sqrt{3}$ i .
 - b) Placer dans le plan P, les points A et B.
 - c) Soit C le point du plan tel que : $\overrightarrow{AC} = \overrightarrow{OB}$. Déterminer l'affixe du point C.
 - d) Montrer que le point C appartient au cercle de centre O et passant par A.
 - e) Montrer que le quadrilatère OABC est un losange.

EXERCICE N°2: (6 points)

- $1^{\circ}/$ a) Vérifier que : $(1 2i)^{2} = -3 4i$.
 - b) Résoudre dans C, l'équation (E): $z^2 (3 + 4i)z + 7i 1 = 0$.
- 2°/ On considère, dans C l'ensemble des nombres complexes, l'équation :

$$(E): z^3 - (3+5i)z^2 + (10i-5)z + 7 + i = 0$$

- a) Vérifier que $z_0 = i$ est une solution de l'équation (E).
- b) Déterminer les nombres complexes a , b , c tels que , pour tout nombre complexe z :

$$z^{3} - (3+5i)z^{2} + (10i-5)z + 7 + i = (z-i)(az^{2}+bz+c) = 0$$
.

- c) Résoudre dans C, l'équation (E).
- 3°/ Dans le plan complexe P, rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}). On considère les points A, B et C d'affixes respectives 1+3 i; i et 2+ i.
 - a) Placer sur une figure les points A, B et C.
 - b) Montrer que le triangle ABC est un triangle isocèle.

PROBLEME: (8 points)

Soit f la fonction numérique définie par : f (x) = x + $\sqrt{x^2 - 4}$.

- 1°/ Montrer que la fonction f est définie sur $]-\infty$, -2] \cup [2, $+\infty$ [.
- 2°/ Etudier la continuité de f sur] $-\infty$, -2] \cup [2, $+\infty$ [.
- 3°/ Etudier la dérivabilité de f à droite en 2 et la dérivabilité de f à gauche en -2 . Interpréter géométriquement les résultats obtenues .
- 4°/ Etudier la dérivabilité de f en tout point de] $-\infty$, -2 [\cup] 2, $+\infty$ [.
- 5°/ a) Déterminer : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- b) En déduire que la courbe représentative (C) de la fonction $\ f$ admet une asymptote horizontale au voisinage de $-\infty$ que l'on précisera .
- 6°/ a) Montrer que f'(x) = 1 + $\frac{x}{\sqrt{x^2 4}}$. En déduire le tableau de variation de f.
 - b) Montrer que la droite d'équation y = 2x est une asymptote oblique à la courbe (C).
 - c) Tracer la courbe représentative (C) de f dans un repère orthonormé R (O, \vec{i} , \vec{j}).
- $7^{\circ}/\ a$) Montrer que f réalise une bijection de [2 , $+\infty$ [sur un intervalle J que l'on précisera .
 - b) Montrer que $f^{-1}(x) = \frac{x^2 + 4}{2x}$ pour $x \in J$.
 - c) Tracer la courbe représentative (C') de f⁻¹ dans le même repère (O, \vec{i} , \vec{j}).

Prof : Dhahbi . A	Devoir de synthèse n°2	Section : 4 ^{eme} Economie et Gestion
L.S.A	Mathématique	Durée : 3h ; Date : 06 / 03/ 2004

EXERCICE Nº 1: (6 points)

Soit la suite $(U_n)_{n>0}$ définie par :

$$\left\{ \begin{array}{l} U_0 = \text{-}1 \\ \\ U_{n+1} = \frac{9}{6\text{-}U_n} \end{array} \right. \text{ et pour tout } n \geq 0 \text{ ,}$$

- $1^{\circ}/a$) Démonter , par récurrence , que pour tout $n \in IN$, $U_n \leq 3$.
 - b) Démontrer que la suite $(U_n)_{n\geq 0}$ est strictement croissante.
- 2°/ En déduire que la suite (U_n) est convergente vers un réel 1 que l'on précisera.
- $3^{\circ}/\text{ On pose } V_n = \frac{1}{U_n 3} \text{ pour tout } n \ge 0$.
 - a) Montrer que $V_n\,$ est une suite arithmétique dont on déterminera le premier terme et la raison .
 - b) Exprimer (V_n) puis (U_n) en fonction de n.
 - c) Retrouver alors la limite de (U_n) quand n tend vers $+\infty$.

EXERCICE Nº 2 (6 points):

<u>A/x</u> y et z étant trois réels, résoudre le système suivant :

S:
$$\begin{cases} x + y + z = -2 \\ 4x + 2y + z = 0 \\ 8x + 2y + z = 4 \end{cases}$$

- <u>**B**/</u>Soient a, b et c des réels et f la fonction définie sur] $0 + \infty$ [par : f (x) = $ax^2 + bx + c\sqrt{x}$.
 - On désigne par (C) la courbe représentative de f dans un repère orthonormé (O, i, j).
- 1°/ Quelle relation doivent vérifier les réels a , b et c pour que (C) passe par le point A (1 , 2) .
- 2° / Soit le point B (4,8).
 - Montrer que la courbe (C) passe par le point B si et seulement si 8a + 2b + c = 4
- 3°/ Déterminer f'(x) pour tout x de] $0 + \infty$ [.En déduire que f (1) = $2a + b + \frac{1}{2}c$.
- 4°/ On suppose que la courbe (C) passe par les points A , B et admet une tangente de vecteur directeur i Montrer que f (x) = $x^2 x 2$ \sqrt{x}

PROBLEME (8 points)

Partie A:

- Soit g la fonction définie sur IR par g (x) = 1 + (1 x) e^{-x} .
 - 1°/a) Montrer que g' (x) = (x-2) e^{-x} .
 - b) Etudier le sens de variation de g.
 - c) Calculer g (2) . En déduire que pour tout réel x , on a g (x) > 0 .

Partie B

On considère la fonction f définie par : $1 + x + x e^{-x}$.

On désigne par (C) sa courbe représentative dans un repère orthonormé (O , \vec{i} , \vec{j}) .

- $1^{\circ}/\ a)$ Vérifier que pour tout réel x , on a : f '(x) = g (x) .
 - En déduire le tableau de variation de la fonction f .
 - b) Soit I le point de la courbe (C) d'abscisse 2.
 - Montrer que I est un point d'inflexion pour la courbe (C).
- 2°/ a) Montrer que la droite D d'équation : y = x + 1 est une asymptote oblique à la courbe (C) lorsque x tend vers $+\infty$.
 - b) Etudier la position de la courbe (C) par rapport à la droite D.
- 3°/ a) Montrer que f réalise une bijection de IR sur un intervalle J que l'on précisera.
- b) Soit f⁻¹ la fonction réciproque de f . Déterminer le domaine de continuité et de dérivabilité de f⁻¹ .
- 4°/ Tracer la courbe représentative de f -1 dans le même repère

Prof : Dhahbi . A	Devoir de synthèse n°3	Section: 4 ^{eme} Economie et Gestion
L.S.A	Mathématique	Durée : 3h ; Date : 10 / 05/ 2004

EXERCICE Nº1: (6points)

Une urne contient : cinq boules rouges numérotés : -1, -1, 1, 1, 0.

et quatre boules blanches numérotés : -1, 1, 1, 1.

Les boules sont indiscernables au toucher.

Une épreuve consiste à tirer simultanément et au hasard trois boules de l'urne.

1°/ Calculer la probabilité des évènements suivants :

A : « obtenir trois boules de même couleurs »

B: « obtenir une seule boule portant le nombre -1 »

2°/ Soit l'événement C: « obtenir un produit des nombres marqués, égal à 0 »

Montrer que p (C) =
$$\frac{1}{3}$$

- 3°/ Soit X l'aléa numérique qui associe, à chaque tirage de trois boules de l'urne la somme des nombres marqués sur les trois boules.
 - a) Déterminer la loi de probabilité de X.
 - b) Calculer son espérance mathématique E(X), sa variance et son écart type.
- 3°/ On répète ce tirage 4 fois de suite en remettant à chaque fois les trois boules tirées dans l'urne.

Soit Y l'aléa numérique qui associe le nombre de réalisations de l'événement C au cours de ce quatre épreuves .

- a) Déterminer la loi de probabilité de Y.
- b) Calculer son espérance mathématique E(Y), sa variance et son écart type.

EXERCICE N • 2 : (6 points)

$$1/ \text{ R\'esoudre dans IR}^3 \text{ , le syst\`eme :} \qquad \left\{ \begin{array}{l} x+y+z=-1 \\ x-y+z=-5 \\ 4x+2y+z=4 \end{array} \right.$$

2/ soit a, b et c des réels et f l'application de C gans C définie par : f (z) = $z^3 + a z^2 + b z + c$

a) Déterminer les réels a , b et c pour que l'on ait : f(1) = 0

$$f(-1) = -6$$

 $f(2) = 12$

$$f(2) = 12$$

- b) Vérifier que l'on a alors : $f(z) = (z-1)(z^2 + 2z + 4)$
- 3/ Résoudre, dans C, l'équation : $(z-1)(z^2+2z+4) = 0$
- 4° / Le plan complexe P est rapporté à un repère orthonormé direct (O, u, v).

On considère les points A, B et C d'affixes respectives $z_A = 1$; $z_B = -1 + i\sqrt{3}$ et $z_C = -1 - i\sqrt{3}$.

- a) Ecrire sous forme trigonométrique les nombres complexes z_B et z_C
- b) Placer, dans le plan P, les points A, B et C.
- c) Déterminer l'affixe du point D tel que le quadrilatère ABCD soit un parallélogramme.

PROBLEME: (8 points)

A – Soit la fonction définie sur IR par :

$$\begin{cases} f(x) = e^{x} - x - 1 & \text{si } x \le 0 \\ f(x) = x(1 - \text{Log}(x)) & \text{si } x > 0 \end{cases}$$

On désigne par (C) sa courbe représentative dans un repère orthonormé (O , \vec{i} , \vec{j}) .

- 1°/ Etudier la continuité et la dérivabilité de f en 0.
- 2°/ Etudier les variations de la fonction f et dresser son tableau de variation .
- 3°/ a) Ecrire une équation cartésienne de la tangente T à (C) au point d'abscisse e .
 - a) Montrer que la droite D : y = -x 1 est une asymptote oblique à (C) au voisinage de $+\infty$.
 - b) Pour $x \in]-\infty, 0]$, étudier la position de D et (C).
 - c) Construire la courbe de (C) de f et D dans un repère orthonormé (O , \vec{i} , \vec{j}) .
- 4° / Soit h la restriction de f à [1 , + ∞ [.
 - b) Montrer que f réalise une bijection de $[1, +\infty]$ sur un intervalle J à préciser.
 - b) Montrer que h⁻¹ est dérivable en 0 et calculer (h⁻¹)'(0).
 - c) Construire la courbe de (C') de h⁻¹ dans le repère orthonormé (O, \vec{i} , \vec{j}).
- 5°/ a) Calculer en intégrant par parties : $I_{\alpha} = \int_{\alpha}^{e} x Logx \, dx$ où $\alpha \in \mathbb{R}^*_+$.
 - b) Calculer : $\lim_{\alpha \to 0^+} I_{\alpha}$.
 - c) En déduire l'aire du domaine limité par la courbe (C) et l'axe des abscisses .

<u>Bon courage</u>

Prof : Dhahbi . A	Devoir de contrôle n° 2	Section: 4 ^{eme} Economie et gestion
L.P.A	Mathématique	Durée : 2h ; Date : 07 / 02/ 2004

EXERCICE : (8 points)

$$U_0 = 2$$

Soit la suite définie sur IN par :

$$U_{n+1} = \frac{5U_n - 3}{U_n + 1}$$

1/ Calculer U_1 et U_2 .

2/ a)Vérifier que : U _{n+1} = 5 -
$$\frac{8}{U_n + 1}$$

- b) Montrer, par récurrence , pour tout entier naturel n on a : $0 \prec U_n \prec 3$
- c) Montrer que la suite U_n est strictement croissante .
- d) Montrer que la suite U_n est convergente , en déduire sa limite .
- 3/ On définit la suite V_n sur IN par : $V_n = \frac{U_n 3}{U_n 1}$
 - a) Montrer que la suite V_n est une suite géométrique dont on précisera la raison et le premier terme .
 - b) Calculer en fonction de n .
 - c) Montrer que pour tout $n \in IN$, $U_n = \frac{V_n 3}{V_n 1}$.

Déduire alors U_n en fonction de n et calculer $\lim_{n\to+\infty} U_n$

Problème (12 points)

Partie A:

Soit g la fonction définie sur $I = [0, +\infty)$, par : $g(x) = -x^2 + 1 - Log(x)$.

- 1°/ Etudier les variations de la fonction g
- 2°/ Calculer g (1).
- 3°/ En déduire que :

Si
$$x > 1$$
 alors $g(x) < 0$
Si $0 < x < 1$ alors $g(x) > 0$

Partie B:

Soit f la fonction définie sur] 0, + ∞ [, par : f(x) = 3 - x + $\frac{Logx}{x}$.

et on désigne par (C) sa courbe représentative dans le plan rapporté à un repère orthonormé (O , \vec{i} , \vec{j}) (unité graphique : 2cm)

- 1°/ a) Montrer que $\lim_{x \to a} f(x) = -\infty$
 - b) Interpréter ce résultat géométriquement .
- $2^{\circ}/a$) Déterminer $\lim_{x \to a} f(x)$.
 - b) Montrer que f est dérivable sur] 0, + ∞ [et vérifier que f'(x) = $\frac{g(x)}{x^2}$.
 - c) Dresser le tableau de variation de f.
- $3^{\circ}/a$) Montrer que la droite (D) d'équation y = 3 x est une asymptote oblique à la courbe (C) au voisinage de $+\infty$.
 - c) Etudier la position de la courbe (C) par rapport à (D).
- 4°/ Ecrire l'équation de la tangente (T) à la courbe (C) au point d'abscisse e.
- 5°/ Tracer la courbe représentative (C) de f, (T) et (D) dans un repère orthonormé (O, \vec{i} , \vec{j}).
- 6°/ Déterminer une primitive F de f sur $]0, +\infty$ [qui s'annule en 1.

Prof : Dhahbi . A	Devoir de contrôle n° 3	Section: 4 ^{eme} Economie et gestion
L.P.A	Mathématique	Durée : 2h ; Date : 29 / 04/ 2004

EXERCICE Nº1:

Une urne contient cinq boules rouges , une boule noire et trois boules blanches .Les boules sont indiscernables au toucher .

On tire simultanément et au hasard trois boules de l'urne.

1°) Calculer la probabilité des évènements suivants :

A: « n'obtenir aucune boule rouge »

B: « obtenir une boule de chaque couleur »

C: « obtenir au moins une boule rouge »

2°/ Soit X l'aléa numérique qui associe , à chaque tirage de trois boule de l'urne le nombre de boule rouges obtenues .

- a) Déterminer la loi de probabilité de X.
- b) Calculer son espérance mathématique E(X), sa variance et son écart type.
- c) Déterminer et représenter sa fonction de répartition F.

EXERCICE N^{\bullet} 2:

1°/ Calculer à l'aide d'une intégration par partie les intégrales suivants.

$$A = \int_{1}^{e} Logx dx \qquad B = \int_{0}^{1} xe^{-x} dx \qquad C = \int_{1}^{e} x Logx dx$$

$$2^{\circ}/ \text{ Calculer} \qquad I = \int_{0}^{1} \frac{e^{x}}{e^{x} + 1} dx \qquad J = \int_{e}^{e^{2}} \frac{Logx}{x} dx$$

EXERCICE Nº 3:

Soit la fonction f définie sur IR par : $f(x) = (2-x)e^x$.

Soit (C) la courbe représentative de f dans le plan muni d'un repère orthonormé (O, \vec{i} , \vec{j}).(unité :2cm)

- 1°/ a) Déterminer $\lim_{x\to -\infty} f(x)$. Interpréter géométriquement le résultat obtenu
 - b) Montrer que, pour tout réel x, $f'(x) = (1-x)e^x$.
 - c) En déduire le signe de f '(x) puis dresser le tableau de variations de la fonction f.
- 2°/ a) Déterminer l'intersection de (C) avec les axes de repère.
 - b) Montrer que (C) est un point d'inflexion dont on déterminera les coordonnées .
 - c) Déterminer une équation de la tangente T à (C) au point d'abscisse $\boldsymbol{0}$.
 - d) Tracer la courbe représentative (C) de f dans le repère (O, \vec{i} , \vec{j}).

 3° / Calculer l'aire de la partie du plan limité par (C) , l'axe des abscisses et l'axe des ordonnées .

4°/ Soit A (
$$\lambda$$
) = $\int_{\lambda}^{2} f(x)dx$ ou λ est un réel négatif.

- a) Calculer A (λ).
- b) Calculer la limite de A (λ) quand λ tend vers - ∞

Prof : Dhahbi . A	Devoir de contrôle n° 1	Section: 4 ^{eme} MATHS 2
L.P.A	Mathématique	Durée : 2h ; Date : 12 / 11/ 2004

EXERCICE N°1:

Soit la famille d'équations (E_{θ}) : z^2 - $(1 + i\sin 2\theta)z + \frac{i}{2}\sin 2\theta = 0$

dans la quelle θ désigne un réel appartenant à l'intervalle]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [

A tout nombre complexe $z=x+i\,y$, on associe le point M de coordonnées $(x\,,\,y)$ dans le plan $1^\circ/\,\,\,$ a) Résoudre l'équation (E_θ) dans l'ensemble des nombres complexes C .

- b) Ecrire les solutions de (E_{θ}) sous forme exponentielle .
- c) Préciser les cas de racines doubles
- 2°/ Soient M'(θ) et M''(θ) les points du plan associés aux solutions z'(θ) et z''(θ) de l'équation (E_{θ}) et soit I(θ) le milieu du segment [M'(θ), M''(θ)]
 - a) Déterminer l'ensemble des points $I(\theta)$ quand θ décrit l'intervalle] $\frac{\pi}{2}$, $\frac{\pi}{2}$ [
 - b) Montrer que l'ensemble des points $M'(\theta)$ et $M''(\theta)$ est un cercle (C) que l'on précisera
 - c) Démontrer lorsque $I(\theta)$ sont distincts, que la droite contenant ces deux points a une direction indépendante de θ
 - d) θ étant donné (on fera la figure avec $\theta = \frac{\pi}{6}$), déduire de ce qui précède une construction simple de points $I(\theta)$ et des points $M'(\theta)$ et $M''(\theta)$, une figure soignée comportera tous les éléments intéressants de l'exercice

EXERCICE N°3:

On considère la suite (U_n) définie sur IN par U_0 = 1 et pour tout $n \in IN$: $U_{n+1} = \frac{\sqrt{1 + U_n^2} - 1}{U_n}$.

- $1^{\circ}\!/$ Calculer U_1 et U_2 .
- $2^{\circ}/$ a) Montrer que \forall $n \in IN$, $U_n \in]0, 1]$
 - b) Montrer que la suite U_n est décroissante et qu'elle est convergente, déterminer sa limite.
- $3^{\circ}/\ a)$ Montrer que $\forall\ n\in IN\ ,\, U_{n+1}\leq\ \frac{1}{2}\ U_n\ .$
 - b) En déduire que $\forall \ n \in IN \ , \ 0 \le \ U_n \le \frac{1}{2^n} \ .$
 - c) En déduire que la suite (U_n) est convergente et déterminer sa limite .
- 4°/ a) Montrer que pour tout $x \in \left] 0, \frac{\pi}{2} \right[, \frac{\sqrt{1 + tg^2 x} 1}{tgx} = tg\left(\frac{x}{2}\right).$
 - b) Montrer , par récurrence , que pour tout $n \in IN$; il existe un réel $V_n \in \]\ 0$, $\frac{\pi}{2}$ [tel que $U_n = tg(V_n)$
 - c) En déduire que la suite (V_n) est une suite géométrique de raison $\frac{1}{2}$.
 - d) En déduire que $\forall \ n \in IN \ , \ U_n = \, tg \, (\frac{\pi}{2^{^{n+2}}} \) \, .$

- e) En déduire la limite de la suite ($U_n)$ et déterminer $\lim_{r\to +\infty} 2^n U_n\,$.
- f) En déduire la valeur de tg $(\frac{\pi}{16})$.
- 5°/ Pour tout n \in IN , on pose $V_n = \frac{2^{n+3}U_{n+1}}{1+(U_{n+1})^2}$ et $W_n = 2^{n+1}U_n$.
 - a) Montrer que pour tout $n \in IN$, $U_n = \frac{2U_{n+1}}{1 (U_{n+1})^2}$.
 - b) Montrer que pour tout $n \in IN$, on $a : W_n V_n = \frac{2^{n+4} \cdot (U_{n+1})^3}{1 (U_{n+1})^4}$.
- c) En déduire que : $0 \le W_n$ $V_n \le \frac{1}{2^{2n-2}}$, pour tout $n \in IN^*$, puis que la suite $t_n = W_n$ V_n est convergente et trouver sa limite .
- 6° / Montrer que W_n est décroissante .
- 7°/ Montrer que V_n et W_n sont convergentes et que $\lim_{n\to +\infty} V_n = \lim_{n\to +\infty} W_n$.
- 8° / On pose $L = \lim_{n \to +\infty} W_n$. Montrer que $L = \pi$

Prof : Dhahbi . A	Devoir de Synthèse n° 2	Section: 4 ^{eme} MATHS 2
L.P.A	Mathématique	Durée : 3h ; Date : 12 / 3/ 2005

EXERCICE N°1:

Dans le plan complexe P, on considère un triangle ABC rectangle et isocèle tel que

 $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2} [2\pi]$. On pose $D = S_A(C)$; $E = S_B(D)$ et H le projeté orthogonal de A sur (BC)

- 1° / Soit S la similitude directe définie par : S (A) = B et S (B) = C.
 - a) Déterminer le rapport k et l'angle θ de S.
 - b) Montrer que S(C) = D.
- 2° / Soit Ω le centre de S .
 - a) Montrer que Ω est le point définie par : $\frac{\Omega C}{\Omega A} = 2$ et $(\overrightarrow{\Omega A}, \overrightarrow{\Omega C}) \equiv -\frac{\pi}{2} [2\pi]$.
 - b) Construire alors le point Ω .
- 3°/ Le plan P est rapporté au repère orthonormé direct (A, \overrightarrow{AB} , \overrightarrow{AC}).
 - a) Déterminer l'application complexe associé à la similitude S
 - b) Déterminer alors l'affixe z_0 de Ω .
- 4° / Soit σ la similitude indirecte définie par : $\sigma(A) = B$ et $\sigma(B) = C$.
 - a) Déterminer le centre ϖ de σ et vérifier que $\varpi = D$.
 - b) On pose $\varphi = \sigma 0 \text{ S}^{-1}$.
 - Montrer que φ st une symétrie orthogonale que l'on précisera.
 - Déterminer alors $\sigma(C)$.
- 5°/ Soit l'application f: $P \rightarrow P$, $M(z) \rightarrow M'(z')/z' = (-1+i)$ z + 1.
- a) Montrer que f est une similitude indirecte.
- b) Montrer que $f = \sigma$.

EXERCICE $N^{\bullet}2$:

On considère la fonction f définie par : f (x) = $\frac{Logx}{x^2}$.

- $1^{\circ}/$ a) Etudier les variations de f sur [2 , $+\infty$ [.
 - b) Montrer que, pour tout entier naturel k, $k \ge 2$: $f(k+1) \le \int_{k}^{k+1} f(t)dt \le f(k)$.

(Ind: on peut utiliser le sens de variation de f)

- 2°/ On considère la suite S définie par son terme général : $S_p = \frac{Log2}{2^2} + \frac{Log3}{3^2} + \dots + \frac{Logp}{p^2}$; $p \ge 2$.
 - a) Montrer que la suite S est croissante.
 - b) En utilisant (1), montrer que : $S_p \frac{Log2}{2^2} \le \int_2^p f(t)dt \le S_p \frac{Logp}{p^2}$ et en déduire un encadrement de S_p .
 - c) En utilisant la valeur de $\int_{1}^{p} f(t)dt$, démontrer que la suite S est majorée.
 - d) On admettra que la suite S est convergente , montrer que sa limite L vérifie :

$$\frac{1}{2} + \frac{Log2}{2} \le L \le \frac{1}{2} + 3\frac{Log2}{2^2}$$
.

PROBLEME:

Soit n un entier naturel supérieur ou égal à 2 et f_n la fonction définie sur IR par : f_n (x) = $\frac{x^n}{e^x - 1}$ si $x \ne 0$ f_n (0) = 0

 $(C_n$) désigne sa courbe représentative dans un repère orthonormé (O , \dot{i} , $\dot{\vec{j}}$) .

Partie A:

 1° / Montrer que f_n est continue sur IR .

 2° / Etudier la dérivabilité de f_n en 0 (on distinguera $2cas\ n=2$ et n>2)

On considère la fonction φ_n définie sur par φ_n (x) (n-x) $e^x - n$.

- a) Dresser le tableau de variation de φ_n .
- b) Vérifier que pour tout $n \ge 2$, $e^{n-1} n > 0$. En déduire que l'équation $\varphi_n(x) = 0$ admet dans IR deux solutions 0 et α_n tel que $n-1 < \alpha_n < n$.
- c) Dresser alors suivant la parité de n le tableau de variation de f_n.

3°/a) Montrer que f_n admet un extremum en α_n et que f_n (α_n) = α_n^{n-1} (α_n).

b) Tracer la courbe (C_2) de f_2 .(on prend $\,\alpha_2\cong 1,\!6$) .

Partie B:

Pour tout $n \ge 2$, on pose $I_n = \int_{Log 2}^1 f_n(x) dx$ avec f_n la fonction définie dans la partie A.

- 1°/ Montrer que I_n est décroissante.
- 2° / Prouver que I_n est minorée , en déduire qu'elle est convergente .

3°/a) Montrer que pour tout
$$n \ge 2$$
: $\frac{1}{e-1} \left[\frac{1}{n+1} - \frac{(Log 2)^{n+1}}{n+1} \right] \le I_n \le \frac{1}{n+1} - \frac{(Log 2)^{n+1}}{n+1}$.

b) Calculer alors $\lim_{n\to+\infty} I_n$

Partie C:

Soit F la fonction définie [1, +\infty [par F (x) = $\int_{lagx}^{2Logx} f_2(t)dt$.

- 1°/a) Justifier l'éxistance de F (x) pour tout $x \in [1, +\infty]$.
 - b) Montrer que pour tout $x \in [1, \sqrt{e}]$ [il existe $c \in [Logx, 2Logx]$ tel que; $F(x) = \frac{c^2}{e^c 1}$ Logx

et que :
$$\frac{(Logx)^3}{(x+1)(x-1)^2} \le \frac{F(x)}{x-1} \le \frac{4(Logx)^3}{(x-1)^2}$$
.

- c) En déduire que F est dérivable à droite en 1 et calculer $F_d^{'}(1)$.
- 2°/ a) Montrer que F est dérivable sur] 1, +\infty [et que F' (x) = $\frac{(Logx)^2}{x(x^2-1)}$ [7-x].
 - b) Prouver que pour tout $x \in [e^2, +\infty[$ on a: $\frac{4(Logx)^3}{x^2-1} \le F(x) \le \frac{(Logx)^3}{x-1}$
 - c) Dresser le tableau de variation de F .(on ne cherchera pas à calculer $F\left(\right.7\left.\right)$) $\ .$

Prof : Dhahbi . A	Devoir de controle n° 3	Section: 4 ^{eme} MATHS 2
L.P.A	Mathématique	Durée : 2h ; Date : 23 / 4/ 2005

EXERCICE Nº 1:

On dispose de deux urnes : U₁ , U₂ .

Dans l'urne U₁, il y a trois boules rouges et deux boules blanche.

L'urne U₂ contient deux boule rouge et deux boules blanches .

Toutes les boules sont indiscernables au toucher.

- <u>I -</u> Une opération consiste à tirer une boules de U_1 et une boule de U_2
 - 1°/a) Calculer la probabilité de l'évènement suivant :
 - A : « Obtenir deux boules de même couleur »
 - b) Sachant qu'on a obtenu deux boules de couleurs différents , quelle est la probabilité pour que la boule rouge soit tirée de $U_1\,$.
 - 2°/ Soit X la variable aléatoire qui indique le nombre de boule blanches tirées .
 - a) Déterminer la loi de probabilité de X.
 - b) Calculer l'espérance mathématique et la variance de X.
 - 3°/ On répète l'opération précédente quatre fois de suite , en remettant à chaque fois la boule dans l'urnes ou elle tirée .

Quelle est la probabilité de chacun des évènements suivants .

- B : Obtenir au plus une fois deux boules de méme couleur .
- C : « Obtenir deux boules de méme couleur pour la première fois à la troisième épreuve .
- \underline{II} On considère l'épreuve suivante : on tire une boule de U_1 , si elle est blanche on la garde et on tire une autre boule de U_1 , si elle est rouge on la met dans U_2 et on tire successivement sans remise deux boules de U_2 .

Soit Y la variable aléatoire qui indique le nombre de boule blanches obtenues au cours de cette épreuve .

Déterminer la loi de probabilité de Y.

EXERCICE N°2:

L'unité de longueur étant le centimètre.

Soit ABF un triangle équilatéral tel que AB = 4. On note Δ la médiatrice de [AB] et soit I = A * B. Soit (C) le cercle circonscrit au triangle ABF et d la tangente à (C) en A.

- 1°/ Soit E l'ellipse de foyer F et I et de grand axe 6.
 - a) Vérifier que A et B appartiennent à E.
 - b) Montrer que d'est la tangente à E en A.
 - c) Construire les sommets de E.
- 2°/ Soit G un point du plan tel que le triangle IFG soit isocèle et rectangle en F et E' l'ellipse de foyers F et G et de grand axe 6.
 - a) Montrer que si M est un point commun à E et E' alors M appartient à la médiatrice Δ'de [IG]
 - b) Construire les points communs à E et E'.
 - c) Montrer que E et E' possèdent deux tangentes communes.
- 3° / Soit Γ une ellipse variable dont l'un des foyers F et passant par A et B.
 - a) Montrer que le second foyer F' de Γ décrit la droite Δ privée de F.
 - b) On note 2a le grand axe de Γ . Montrer que $2a \ge 6$.

EXERCICE N°3:

Pour tout $n \in IN^*$, on pose $I_n = \int_0^n (1 + \frac{x}{n})^n e^{-2x} dx$.

- $1^{\circ}/$ A l'aide d'une intégration par parties , calculer $I_1\:$.
- $2^{\circ}/a$) Montrer que , pour tout $t \in IR+$, on a : $t \frac{t^2}{2} \le Log(1+t) \le t$.
 - b) En déduire que pour tout $x \in [0, n]$., on $a : x \frac{x^2}{2n} \le n \text{ Log } (1 + \frac{x}{n}) \le x$.
 - c) Montrer alors que pour tout $x \in [0, n]$, on a: $e^{-x}e^{\frac{x^2}{2n}} \le (1 + \frac{x}{n})^n e^{-2x} \le e^{-x}$.
- 3° / Calculer $\int_{0}^{n} e^{-x} dx$ et montrer que $I_n \leq 1 e^{-n}$.
- 4°/ a) Montrer que , pour tout $t \in IR+$, on a : $e^{-t} \ge 1-t$. En déduire que , pour tout $x \in [0,n]$, on a : $e^{-x}e^{\frac{-x^2}{2n}} \ge e^{-x} \frac{x^2}{2n}e^{-x}$.
 - b) Calculer $\int_{0}^{n} x^{2}e^{-x}dx$, en déduire que $I_{n} \geq 1 \frac{1}{n} + e^{-n}(\frac{1}{n} + \frac{n}{2})$.
- c) Montrer que (I_n) est convergente et calculer sa limite .

Prof : Dhahbi . A	Devoir de synthèse n° 3	Section: 4 ^{eme} Economie et gestion
L.S.A	Mathématique	Durée : 3h ; Date : 13 / 05/ 2003

EXERCICE Nº 1: (6 points)

- 1°/ Dans le plan complexe rapporté à un repère orthonormé (0, \vec{u} , \vec{v}), on considère les points A, B, C et I d'affixes respectives : $z_A = -2i$; $z_B = 1+i$; $z_C = 4+2i$ et $z_I = 2$.
 - a) Placer sur une figure les points A, B, C et I.
 - b) Vérifier que I est le milieu du segment [AC].
- $2^{\circ}/a$) Calculer les affixes u et u' des vecteurs \overrightarrow{BA} et \overrightarrow{BC} .
 - b) Montrer que le triangle ABC est un triangle isocèle de sommet principale B.
- 3°/ Soit D le symétrique de B par rapport au point I.
 - a) Déterminer l'affixe z_D de point D
 - b) Montrer que le quadrilatère ABCD est un losange.

EXERCICE N°2:

Soit
$$z = -1 - i$$
; $z' = -1 + i\sqrt{3}$; $Z = \frac{z}{z'}$.

- 1° / Ecrire chacun des nombres complexes z, z' et Z sous forme trigonométrique .
- 2° / En déduire $\cos \frac{7\pi}{12}$, $\sin \frac{7\pi}{12}$.

EXERCICE N°3:

A / Calculer les limites suivants

B / Soit la fonction $f : IR \rightarrow IR$

$$x \rightarrow \begin{cases} f(x) = \sqrt{4-x^2} & \text{si } x \in [-2, 2] \\ f(x) = \frac{2x^2 + 8x + 8}{x^2 - 4} & \text{si } x < -2 \\ f(x) = x^2 - 2x + 2 & \text{si } x > 2 \end{cases}$$

Prof : Dhahbi . A	Devoir de synthèse n° 1	Section : 4 ^{eme} Economie et Gestion
L . P . Elkhawarismi	Mathématique	Durée : 3h ; Date : 10 / 12/ 2002

EXERCICE Nº 1 : (6 points)

- $1^{\circ}/a$) Vérifier que : $(9 + 2i)^2 = 77 + 36i$.
 - b) Résoudre dans C, l'équation (E): $z^2 (9-2i)z 18i = 0$.
- $2^{\circ}/a$) Résoudre dans C, l'équation (E'): $Z^4 (9-2i)Z^2 18i = 0$.
 - b) Ecrire sous forme trigonométrique les solutions de (E').
- 3°/ Le plan complexe P est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}).

On considère les points A, B et C d'affixes respectives 1+i; 3i et 1+3i

- a) Placer dans le plan P, les points A; B et C.
- b) Montrer que le triangle ABC est rectangle en C.

EXERCICE N°2: (6 points)

- $1^{\circ}/a$) Vérifier que : $(1 2i)^2 = -3 4i$.
 - b) Résoudre dans C, l'équation (E): $z^2 (3+4i)z + 7i 1 = 0$.
- 2°/ On considère, dans C l'ensemble des nombres complexes, l'équation :

$$(E): z^3 - (3+5i)z^2 + (10i-5)z + 7 + i = 0$$

- a) Vérifier que $z_0 = i$ est une solution de l'équation (E).
- b) Déterminer les nombres complexes a , b , c tels que , pour tout nombre complexe z :

$$z^{3} - (3+5i)z^{2} + (10i-5)z + 7 + i = (z-i)(az^{2}+bz+c) = 0$$
.

- c) Résoudre dans C, l'équation (E).
- 3°/ Dans le plan complexe P, rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}). On considère les points A, B et C d'affixes respectives 1 + 3i; i et 2 + i.
 - a) Placer sur une figure les points A, B et C.
 - b) Montrer que le triangle ABC est un triangle isocèle.

PROBLEME : (8 points)

- <u>A</u>/ Soit g la fonction numérique définie sur $[0, +\infty[$ par : $g(x) = 2 + \sqrt{x+1}$.
 - 1° / Montrer que g est continue sur $[0, +\infty]$.
 - $2^{\circ}\!/\,a)$ Montrer que g est dérivable sur $[\ 0\ , +\infty[$ et que $g'\ (\ x\) \prec 0\$, pour tout $x\!\in[0,+\infty[$
 - b) En déduire que g (x) = 0 admet une solution unique α dans $[0, +\infty[$
 - c) Vérifier que : $4 \prec \alpha \prec 5$
- <u>**B**/</u> Soit f la fonction numérique définie sur [-1, + ∞ [par : f (x) = 2 x + $\sqrt{x+1}$.
 - $1^{\circ}/\ a)$ Etudier la dérivabilité de f à droite en 1 .
 - b) Interpréter géométriquement le résultat obtenue.
 - $2^{\circ}\!/$ Etudier la dérivabilité de f en tout point de $\,$] -1 , $+\infty\,[$.
 - 3°/ Déterminer : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter géométriquement le résultat obtenue .
 - $4^{\circ}/a$) Montrer que f'(x) = $\frac{1}{2\sqrt{x+1}}$. En déduire le tableau de variation de f.
 - b) Montrer que pour tout $x \in [-1, +\infty[f(x)] = x$ équivaut à g(x) = 0
 - c) Tracer la courbe représentative (C) de f dans un repère orthonormé R (O, i, j).
 - 5°/ a) Montrer que f réalise une bijection de [-1 , $+\infty$ [sur un intervalle J que l'on précisera .
 - b) Montrer que $f^{-1}(x) = (x-1)^2 1$. pour $x \in J$.
 - c) Tracer la courbe représentative (C') de f⁻¹ dans le même repère (O, \vec{i} , \vec{j}).

Problème (12 points)

Partie A:

Soit g la fonction définie sur $I = [0, +\infty)$, par : g (x) = -x² + 1 - Log(x).

- 1°/ Etudier les variations de la fonction g
- 2° / Calculer g (1).
- 3°/ En déduire que :

Si
$$x > 1$$
 alors $g(x) < 0$
Si $0 < x < 1$ alors $g(x) > 0$

Partie B:

Soit f la fonction définie sur] 0, +\infty [, par : f(x) = 3 - x + $\frac{Logx}{x}$.

et on désigne par (C) sa courbe représentative dans le plan rapporté à un repère orthonormé (O , \vec{i} , \vec{j}) (unité graphique : 2cm)

- 1°/ a) Montrer que $\lim_{x \to 0^+} f(x) = -\infty$
 - b) Interpréter ce résultat géométriquement .
- $2^{\circ}/$ a) Déterminer $\lim_{x \to +\infty} f(x)$.
 - b) Montrer que f est dérivable sur] 0, +\infty [et vérifier que f'(x) = $\frac{g(x)}{x^2}$.
 - c) Dresser le tableau de variation de f.
- $3^{\circ}/a$) Montrer que la droite (D) d'équation y=3-x est une asymptote oblique à la courbe (C) au voisinage de $+\infty$.
 - d) Etudier la position de la courbe (C) par rapport à (D).
- 4°/ Ecrire l'équation de la tangente (T) à la courbe (C) au point d'abscisse e.
- 5°/ Tracer la courbe représentative (C) de f, (T) et (D) dans un repère orthonormé (O, \vec{i} , \vec{j}).
- $6^{\circ}/$ Déterminer une primitive F de f sur] 0 , $+\infty$ [% (1) qui s'annule en 1 .

Bon courage

PROBLEME: (8 points)

A – Soit la fonction définie sur IR par :

$$\begin{cases} f(x) = e^{x} - x - 1 & \text{si } x \le 0 \\ f(x) = x(1 - \text{Log}(x)) & \text{si } x > 0 \end{cases}$$

On désigne par (C) sa courbe représentative dans un repère orthonormé (O , \vec{i} , \vec{j}) .

- 1°/ Etudier la continuité et la dérivabilité de f en 0.
- 2°/ Etudier les variations de la fonction f et dresser son tableau de variation .
- 3°/ a) Ecrire une équation cartésienne de la tangente T à (C) au point d'abscisse e .
 - d) Montrer que la droite D : y = -x 1 est une asymptote oblique à (C) au voisinage de $+\infty$.
 - e) Pour $x \in]-\infty, 0]$, étudier la position de D et (C).
 - f) Construire la courbe de (C) de f et D dans un repère orthonormé (O , \vec{i} , \vec{j}).
- 4° / Soit h la restriction de f à [1 , + ∞ [.
 - e) Montrer que f réalise une bijection de [1, $+\infty$ [sur un intervalle J à préciser .
 - b) Montrer que h⁻¹ est dérivable en 0 et calculer (h⁻¹)'(0).
 - c) Construire la courbe de (C') de h $^{-1}$ dans le repère orthonormé (O , \vec{i} , \vec{j}) .

EXERCICE N°4:

Dans le plan complexe rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) . On considère les points A et B d'affixes

respectives:
$$a = \frac{-1 + i\sqrt{3}}{2}$$
 et $b = \frac{\sqrt{3} + i}{2}$.

- 1°/ a) Ecrire sous forme trigonométrique chacun des nombres complexe a et b.
 - b) Représenter les points A et B dans le repère (O, \vec{u}, \vec{v}) .
- 2° / On pose z = a + b et on désigne par M le point d'affixe z.
 - a) Montrer que OBMA est un carré.
 - b) Donner la forme trigonométrique de z.
 - c) Calculer alors $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.
- 3°/ Soient A et B les points d'affixes respectives 3 et 4i, et (C) l'ensemble des points M d'affixe z tels que |z-3| = |z-4i|
 - ☐ (C) est la médiatrice du segment [AB].
 - \square (C) est le cercle de centre Ω d'affixe 3 4i et de rayon 3.
 - \Box (C) est le cercle de centre A et de rayon 3.
- 4° / Le plan complexe, muni d'un un repère orthonormé direct (O, \vec{u}, \vec{v}) . On donne les points A et B d'affixes respectives 2 et 3i. L'affixe du point C tel que OACB soit un paralellogramme est :
 - \Box $z_C = 2 3i$
 - \Box $z_C = 3 2i$

EXERCICE Nº 4:

- <u>I</u>- Soit g la fonction définie sur I =] 0, $+\infty$ [, par : g (x) = x + (x 2) ln (x) .
 - 1°/ a) Montrer que g' (x) = $2\frac{x-1}{x} + \ln x$.
 - b) En déduire que : si x > 1 alors : g' (x) > 0 si x < 1 alors : g' (x) < 0
 - 2°/ a) Etudier les variations de g.
 - b) En déduire que : pour x > 0, g(x) > 1
- **II-** Soit f la fonction définie sur $]0, +\infty[$, par : $f(x) = 1 + x \ln x (\ln(x))^2$.
 - 1°/ a) Calculer: $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
 - b) Vérifier que : f'(x) = $\frac{g(x)}{x}$ et dresser le tableau de variation de f.
 - 2° / On désigne par (C) la courbe représentative de f dans un repère orthonormé (O , \vec{i} , \vec{j}).
 - a) Ecrire une équation cartésienne de la tangente (T) à la courbe (C) au point d'abscisse 1
 - b) Donner le sens de variation de la fonction h définie sur $\]\ 0\ , +\infty\ [$ par h ($x\)=x-1-\ln x\ .$ En déduire le signe de h ($x\)$.
 - c) Montrer que f (x) x = (ln (x)– 1)h (x) . En déduire la position de la courbe (C) par rapport à sa tangente (T) .

- 3°/ a) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$. Conclure.
 - b) Tracer (T) et (C).
- 4°/ a) Montrer que F (x) = $\frac{1}{2} x^2 \ln x \frac{1}{4} x^2 x(\ln (x))^2 + 2 x \ln x x$ est une primitive de f sur] 0,+∞[
 - b) En déduire l'aire A du domaine limité par la courbe (C) et les droites d'équations respectives : $x=1,\,x=e$ et y=0 .