Lycée El Messadi Nabeul Ben Sidhom Mongi

Devoir de contrôle N°2 4 sc-exp

le 23/02/2011 Durée: 2heures

Exercice N°1 (QCM)(3points)

Pour chacune des questions suivantes choisir la bonne réponse.

1) Une primitive de $f: x \mapsto \frac{8}{\sqrt{4-4x}}$ sur]- ∞ ,1[est la fonction définie par :

 $a)F(x) = -4\sqrt{4-4x}$

b)
$$F(x) = -2\sqrt{4-4x}$$

c)
$$F(x) = -\sqrt{4-4x}$$

2) Une primitive de $g: x \mapsto \cos(\frac{x}{2})\sin^2(\frac{x}{2})$ sur IR est la fonction définie sur IR par :

a)G(x) = $\frac{1}{2} \left(\sin\left(\frac{x}{2}\right) \right)^3$

b)
$$G(x) = \frac{2}{3} (\sin(\frac{x}{2}))^3$$

b)
$$G(x) = \frac{2}{3} \left(\sin(\frac{x}{2}) \right)^3$$
 c) $G(x) = \frac{1}{6} \left(\sin(\frac{x}{2}) \right)^3$.

3) La fonction $H(x) = x\sqrt{x+1}$ est une primitive sur $]1,+\infty[$ de la fonction : a) $h(x) = \frac{3x+2}{2\sqrt{x+1}}$ b) $h(x) = \frac{2x+3}{2\sqrt{x+1}}$

b)
$$h(x) = \frac{2x+3}{2\sqrt{x+1}}$$

c)
$$h(x) = \frac{x+2}{2\sqrt{x+1}}$$

Exercice N°2(5,5points)

Le graphique ci-dessous est la courbe représentative d'une fonction f définie sur $[-3, +\infty]$ ainsi que sa tangente T au point d'abscisse0, sa demi tangente à droite au point (-3,-2), et ses demi tangentes au point (-1,0)

• La courbe C_f admet au voisinage de $+\infty$ une branche parabolique de direction (0,i)

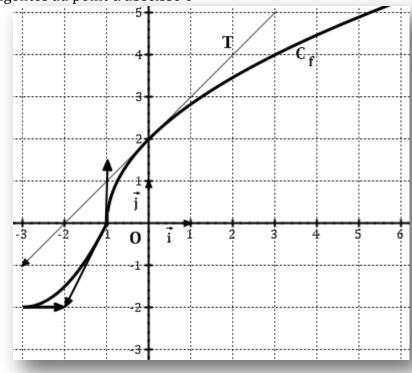
 $1) \text{Par lecture graphique déterminer } \lim_{x \to +\infty} f(x) \quad ; \quad \lim_{x \to +\infty} \frac{f(x)}{x} \quad ; \\ \lim_{x \to (-1)^-} \frac{f(x)}{x+1} \quad \text{et} \quad \lim_{x \to (-1)^+} \frac{f(x)}{x+1}$

2) Ecrire l'équation de la Tangente à C_f au point d'abscisse 0.

3)a) Justifier que f réalise une bijection de $|-3,+\infty|$ sur un intervalle J qu'on précisera.

b) Montrer que f^{-1} est dérivable en 2 et déterminer $(f^{-1})'(2)$

c) Tracer dans le même repère la courte de f^{-1} . Ainsi que sa demi tangente à au point d'abscisse -2 et ses demi tangentes au point d'abscisse 0



Exercice N°3 (6points)

L'espace ξ est rapporté à un repère orthonormé direct $(0,\vec{i},\vec{j},\vec{k})$

On donne les points A(0,1,0); B(1,0,0); C(0,2,1) et D(1,0,-4).

- 1°) a) Montrer que les points A, B et C définissent un plan P
 - b) Déterminer l'aire du triangle ABC
 - c) Ecrire une équation du plan P
- **2°)** a) Montrer que les points A,B,C et D ne sont pas coplanaires.
 - b) Calculer le volume du tétraèdre ABCD.
- **3°) a)** Vérifier que le point I (1;1;1) est le centre du cercle ℰ circonscrit au triangle ABC.
 - **b)** Ecrire une représentation paramétrique de l'axe Δ de &
 - c) Ecrire l'équation cartésienne du plan Q médiateur de [AD].
 - **d)** Déterminer les coordonnées du point d'intersection K de Q et la droite Δ .

Exercice N°4(6,5points)

Soit f la fonction définie sur]0,+
$$\infty$$
 [par f(x) =
$$\begin{cases} f(x) = \frac{x}{\sqrt{x^2 + 1}} & \text{si } x \le 0 \\ f(x) = \frac{x^2}{x + 1} & \text{si } x > 0 \end{cases}$$

On désigne par C_f sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$

- 1) a)Vérifier que f est continue en 0
 - b)Etudier la dérivabilité de f à gauche en 0
 - c) Etudier la dérivabilité de f à droite en 0
 - 2) a) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
 - b) Montrer que D : y = x 1 est une asymptote à C_f au voisinage de + ∞
 - 3) a) Montrer que pour tout x de $]-\infty$, 0] on a $f'(x)=\frac{1}{\left(\sqrt{x^2+1}\right)^3}$.
 - b) Calculer f'(x) pour x > 0 et dresser le tableau de variation de f.
 - 4) Tracer D , C_f et les demi tangentes de $\,C_f$ au point O
 - 5)a) Montrer que f réalise une bijection de IR sur f(IR)
 - b) Expliciter $f^{-1}(x)$ pour $x \in]-1,0]$