Site web: http://www.matheleve.net

Email1 : contact@matheleve.net Email2 : matheleve@gmail.com

Devoir de contrôle n°02

Lycée Ali Bourguiba Bembla

4 ème sc1

Lundi 18-02-2013

Chortani Atef

Exercice 1(6points)

L'espace est rapporté à un repère orthonormé direct $(0; \vec{i}, \vec{j}; \vec{k})$

On donne les points A (1,0,0); B(0, 2, 0) et C (0, 0, 3).

- 1)a)Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
- b) En déduire qu'une équation du plan (ABC) est 6x + 3y + 2z 6 = 0
- 2) Soit I et J les milieux respectifs des segments [AB] et[AC]

On désigne par Δ la droite passant par I et de vecteur directeur \vec{k} et par Δ'

La droite passant par J et de vecteur directeur j

- a)Donner une représentation paramétriques de chacune des droites Δ et Δ'
- b)En déduire que Δ et Δ' sont sécantes au point $\Omega\left(\frac{1}{2},1,\frac{3}{2}\right)$
- c)Calculer la distance de $\boldsymbol{\Omega}\,$ au plan (ABC)

Exercice 2(6points)

Soit la fonction f définie sur \mathbb{R} par : $f(x) = \frac{x}{4 + \cos x}$

- 1) Montrer que f admet dans IR une seule primitive F vérifiant F(0) = 0.
- **2)** a) Montrer que la fonction définie sur IR par : g(x) = F(x) F(-x) est constante.
 - b) Etudier alors la parité de F.
- 3) a) Montrer que : pour tout $t \in [0; +\infty[$ on a : $\frac{1}{6}t \le f(t) \le t$
 - b) Déduire que pour tout $x \in [0; +\infty[$ on a : $\frac{1}{12}x^2 \le F(x) \le \frac{1}{2}x^2$
- 4) Calculer alors $\lim_{x\to +\infty} F(x)$ en déduire $\lim_{x\to -\infty} F(x)$
- 5) a) Etudier le comportement de la courbe (C) de F au voisinage de $+\infty$.
 - b) Dresser le tableau de variation de F.

Exercice 3(8points)

Soit f la fonction définie sur IR par :

$$\begin{cases} f(x) = x^2 \ln\left(1 + \frac{1}{x^2}\right) & \text{si } x \neq 0 \\ f(0) = 0 & \end{cases}$$

1) a) Montrer que f est une fonction paire.

b)Monter que
$$\lim_{x \to +\infty} f(x) = 1$$

- 2)a) Montrer que f est dérivable en 0.
- b) Montrer que f est dérivable sur IR*et que pour tout $x \in IR*$ on a :

$$f'(x) = \frac{2}{x} \left[f(x) - \frac{x^2}{1 + x^2} \right]$$

3) a) En appliquant le théorème des accroissements finis à la fonction : $t \rightarrow ln t$,

Montrer que pour tout $x \in IR^*$, il existe un réel $c \in [x^2, 1 + x^2]$ tel que ln $(1 + \frac{1}{x^2}) = \frac{1}{c}$.

- b) Déduire que pour tout $x \in IR_+^*$, on a : $\frac{x^2}{1+x^2}$ < f(x) < 1.
- c) Déterminer alors le signe de f '(x) dans \it{IR}^*_+ et dresser le tableau de variation de f .
- 4)Tracer la courbe représentative (C) de f relativement à un repère orthonormé $(0;\vec{1},\vec{j})$

5) Pour tout
$$n \in IN^*$$
, $U_n = (1 + \frac{1}{n^2})^{n^2}$.

- a) Exprimer U_n en fonction de f (n) .Déduire que $\lim_{n\to +\infty} U_n = e$.
- c) Montrer que la suite U_n est croissante.