DEVOIR DE CONTROLE N°1

PROF: MR. BOUAZIZI BRAHIM

NIVEAU: 4ème SCIENCES EXPÉRIMENTALES

EPREUVE: MATHÉMATIQUES

FÉVRIER 2014

DURÉE: 2 HEURES

Le sujet de l'examen contient 4 pages, les pages n°3 et n°4 serons rendues

Exercice n°1: (8 points)

Dans l'annexe ci-joint, on a tracé, dans un repère orthonormé $(0,\vec{\imath},\vec{\jmath})$, la représentation graphique (C) d'une fonction f dérivable sur $\mathbb R$ ainsi que ses tangentes aux points $A\left(1,\frac{5}{3}\right)$ $B\left(2,\frac{4}{3}\right)$.

- La courbe (C) admet deux asymptote $D: y = x + \frac{4}{3}$ et $D': y = x \frac{4}{3}$
- 1. Par lecture graphique déterminer :

a)
$$\lim_{x \to -\infty} f(x)$$
, $\lim_{x \to -\infty} \frac{f(x)}{x}$ et $\lim_{x \to +\infty} (f(x) - x) \lim_{x \to 2} \frac{f(x) - \frac{4}{3}}{x - 2}$

- b) Dresser le tableau de variations de f
- 2. Soit g la restriction de f à l'intervalle $]-\infty;-1]$
 - a) Montrer que g réalise une bijection de $]-\infty;-1]$ sur un intervalle que l'on précisera
 - b) Vérifier que l'équation g(x) = 0 admet une unique solution α telle que $-\frac{4}{3} < \alpha < 1$
 - c) Préciser alors le signe de f sur $\mathbb R$
 - d) Vérifier que la fonction g^{-1} n'est pas dérivable à gauche en $\frac{5}{3}$
 - e) Tracer dans le même repère la courbe (C') de $\$ la fonction g^{-1}
- 3. a) Montrer que f admet une unique primitive F sur \mathbb{R} telle que $F(1) = -\frac{5}{6}$
 - b) Préciser les variations de F sur $\mathbb R$
- 4. a) Sachant que $f(x) = x \frac{4x-6}{3\sqrt{x^2-3x+3}}$; donner l'expression de F
 - b) Calculer l'aire A de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations x=0 et x=2
 - c) Déduire l'aire A' de la partie hachurée du plan limitée par la courbe (C), et les droites d'équations

$$y = \frac{2}{\sqrt{3}}$$
; $x = 0$ et $x = 2$

Exercice n°3: (7 points)

L'espace est muni d'un repère orthonormé direct $(0,\vec{i},\vec{j},\vec{k})$.

Soient les points A(0,0,1), B(1,-1,0), C(0,1,3) et I(2,1,-1)

- 1. a) Déterminer $\overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - b) Déduire que les points A, B et C déterminent un plan P
 - b) Calculer le volume du tétraèdre IABC
- 2. a) Montrer que le plan P est d'équation :x + 2y z + 1 = 0
 - b) Montrer que la droite (BI) est perpendiculaire au plan P
- 3. On considère l'ensemble $S: x^2 + y^2 + z^2 4x 2y + 2z 3 = 0$
 - a) Vérifier que $A \in S$
 - b) Montrer que S est une sphère de centre I et déterminer son rayon R
 - c) Prouver que l'intersection du plan P et la sphère S est un cercle de rayon $\sqrt{3}$ et préciser son centre
- 4. Soit la droite $D: \begin{cases} x = 2 + 2\alpha \\ y = 1 \alpha \text{ où } \alpha \in \mathbb{R} \\ z = -1 \end{cases}$
 - a) Vérifier que $I \in D$
 - b) Pour tout point M de la droite D ; calculer le volume du tétraèdre MABC
 - c) Expliquer pourquoi les tétraèdres MABC et IABC ont le même volume

Exercice n°3: (5 points)

Pour chacune des questions dans la page n°3 une seule des propositions données est correcte ; cocher la en justifiant

Principe pour la notation:

(1 pt) pour chaque bonne réponse justifiée (0.5 pt) pour chaque bonne réponse non justifiée et (0 pt) en cas d'absence de réponse ou une fausse réponse.

Bonne chance -----***

. .	
Nom	:

Prénom:

N°:

1. Soit la fonction $f: x \mapsto (x+1)\sqrt{x^2+2x+5}$. Une primitive de f sur \mathbb{R} est :

			3
$F: x \mapsto $	$x^{2} +$	2x +	5

$$F: x \mapsto \frac{1}{3}\sqrt{x^2 + 2x + 5}^3$$

$$F: x \mapsto \frac{2}{3}\sqrt{x^2 + 2x + 5}^3$$

2. La fonction $G: x \mapsto \cos^3(-2x)$ est une primitive sur \mathbb{R} de la fonction g définie par

g(x) =	$= 3\sin(-2x)\cos^2(-2x)$

$$g(x) = -6\sin(-2x)\cos^2(-2x)$$

$$g(x) = 6\sin(-2x)\cos^2(-2x)$$

.....

 $ightharpoonup L'espace muni d'un repère orthonormé direct <math>(0,\vec{\imath},\vec{\jmath},\vec{k})$. Soient A et B deux points tels que AB=3

3. L'ensemble des points M de l'espace tel que $\overrightarrow{MA} \wedge \overrightarrow{MB} = \overrightarrow{0}$ est :

Un plan

Une	droite
CLIVE	vii Ciic

.....

4. Le plan (A, \vec{i}, \vec{j}) et le plan P: x - y + 2 = 0 sont :

Perpendiculaires	
------------------	--

Sécants

Parallèles

.....

5. Le plan Q passant par A et de vecteur normal \overrightarrow{AB} et la sphère S de centre B et de rayon A sont

Disjoints		Tangents		Sécants	

.....

Nom: Prénom: N°:

Annexe:

