L-S: E-Elhaythem

A-S: 2016 / 2017

Devoir de control N°3

*** Mathématiques ***

Prof : D - Ali

Classe: 4 sc2

Exercice N°1:07 pts

Une urne contient : deux boules vertes numérotées ; 1 ; (-1) . et trois boules blanches numérotées ; 0 , 1 , (-1)

1°) on lance une fois une pièce de monnaie parfaite :

- Si on obtient "face ", on tire simultanément et au hasard deux boules de l'urne
- Si non on tire successivement et avec remise deux boules de l'urne.

On s'intéresse à la somme des numéros des deux boules tirées .

Soit l'événement A " Obtenir une somme nulle " .

- a) Montrer que : p (A) = $\frac{29}{100}$
- b) Sachant qu'on a obtenu une somme nulle quelle est la probabilité d'obtenir face ?.
- 2°) on répète l'épreuve précédente n fois de suite ($n \ge 1$) ; en remettant à chaque fois les boules tirées dans l'urne .
 - a) Déterminer en fonction de n la probabilité p_n pour que l'on ait au moins une fois une somme non nulle
 - b) Déterminer la plus petite valeur de n pour laquelle p_n ≥ 0,95
- 3°) on tire successivement et sans remise les cinq boules de l'urne.

Soit X l'alea numérique qui indique le rang de la première boule blanche tirée.

- a) Déterminer la loi de probabilité de X.
- b) Soit F la fonction de répartition de X . calculer F ($\frac{1}{2}$) ; F ($\frac{4}{3}$) ; F ($\frac{8}{3}$) et F (4) .
- c) Calculer l'espérance mathématique E (X) et l'écart-type σ (X) de X .

Exercice N°2:06 pts

L'espace est muni d'un repère orthonormé ($0; \vec{i}; \vec{j}; \vec{k}$). on considère les points A (0; 1; 3); B (1; -1; 0) et le point C (2; 1; 4).

- 1°) a) Montrer que les points A; B et C ne sont pas alignes
 - b)Déterminer une équation du plan P passant par les points A ; B et C

T-S-V-P la feuille

- 2°) On considère l'ensemble (E_m) d'équation : $x^2 + y^2 + z^2 + 2y + 2z + m^2 4m + 5 = 0$ ou m est un paramètre réelle .
 - a) Déterminer suivant les valeurs de m la nature de l'ensemble E_m ; préciser les éléments caractéristiques
 - b) Pour $m \in]1; 3[.Montrer que(E_m) est une sphère de centre I à déterminer et de rayon <math>R \le 1$.
 - c) Déterminer l'ensemble d'intersection de (E₂) et le plan P .

Exercice N°3:7 pts

Soit f la fonction définie sur IR par : f (x) = $1 + e^x - x e^x$.

- 1°) Dresser le tableau de variation de f
- 2°) a) calculer $\varprojlim_{x \to +\infty} \frac{f(x)}{x}$. interpréter graphiquement le résulta .
 - b)Montrer que l'équation f (x) = 0 admet une dans IR une solution unique α ; tel que : 1 < α < 1,5
 - c) Etudier la position relative de la courbe ζ_f et la droite Δ d'équation : y = x
- 3°) a) Montrer que la restriction g de f sur l'intervalle [0 ; + ∞ [réalise une bijection de [0 ; + ∞ [vers]- ∞ ; 2] b)Montrer que g⁻¹ est dérivable en 0 est (g⁻¹)'(0) = - $\frac{\alpha-1}{\alpha}$
- 4°) construire dans le même repère (O ; \vec{t} ; \vec{j}) la droite Δ ; la courbe ζ_f et la courbe (ζ') de g^{-1} .
- 5°) a) Calculer l'aire de la partie du plan limitée par la courbe ζ_f et la droite Δ et les droites d'équations Respective x=0 et x=1
 - b) Déduire que $\int_{1}^{2} g^{-1}(x) dx = e 2$