<u> Lycée Ibn Rachiq</u> Kairouan

DEVOIR A LA MAISON

Ahmed

EXERCICE: 1

Pour tout réel $\theta \in [0, \pi[$ on considère l'équation dans [] (E) : $[z^3 + 4z^2 + (5 - e^{i2\theta})z - 4i\sin\theta \cdot e^{i\theta}] = 0$

- 1) a- prouver que $e^{i\theta}$ est une racine carré de 1+ 2 i Sin θ . $e^{i\theta}$ b- montrer que (- 2) est une solution de (E) puis la résoudre
- 2) Le plan complexe est rapporté au repère orthonormé (O, \vec{u} , \vec{v}) on désigne par A, M_1 et M_2 les points d'affixes respectifs $z_A = -2$, $z_1 = -1 + e^{i\theta}$ et $z_2 = -1 - e^{i\theta}$
 - a- mettre sous la forme exponentielle z_1 et $\frac{z_1}{z_1}$
 - b- montrer que les points M1 et M2 sont symétrique par rapport a un point fixe I a préciser
 - c- déterminer ζ_1 l'ensemble des points M_1 quant θ varie puis déduire ζ_2 l'ensemble des points M_2
- 3) a- montrer que OM₁AM₂ est un rectangle b- déterminer θ pour la quelle OM_1AM_2 est un carré

EXERCICE: 2

A) soit la fonction f définie sur $[0, +\infty)$ par $f(x) = 1 - \frac{\sqrt{x^2 + 2x}}{x + 1}$

On désigne par ζ_f sa courbe dans un plan rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ (unité 4 cm)

- 1) a étudier la dérivabilité de f a droite de 0 et interpréter graphiquement le résultat obtenu
 - b montrer que f et dérivable sur] 0 , + ∞ [et que f ' (x) = $-\frac{1}{(x+1)^2 \sqrt{x^2 + 2x}}$
 - c dresser le tableau de variation de f
- 2) a Montrer que f réalise une bijection de $\begin{bmatrix} 0 \\ + \infty \end{bmatrix}$ sur un intervalle J que l'on précisera on note f^{-1} sa fonction réciproque b – montrer que f^{-1} est dérivable sur J

 - c expliciter f⁻¹ (x) pour tout x de J
- 3) a montrer que l'équation f (x) = x admet dans $[0, +\infty[$ une solution unique α et que $\alpha \in]0, 1[$ b – Construire ζ_f et $\zeta_{f^{-1}}$ dans le même repère
- B) soit la fonction g définie sur $\left[0; \frac{\pi}{2}\right]$ par $\left\{g(x) = f\left(\frac{1}{\sin(x)} 1\right) \text{ si } x \neq 0\right\}$
- 1) a montrer que la fonction g est continue à droite en 0
 - b montrer que pour tout x de 0; $\frac{\pi}{2}$ g(x) = 1 Cos(x)
- 2) a montrer que g réalise une bijection de $\left[\begin{array}{c} 0 \ ; \ \frac{\pi}{2} \end{array}\right]$ sur $\left[\begin{array}{c} 0 \ , 1 \end{array}\right]$ et calculer g $^{-1}(0)$, g $^{-1}(1)$ et g $^{-1}(\frac{1}{2})$
 - b montrer que pour tout x de $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ on a $\begin{bmatrix} \cos (g^{-1}(x)) = 1 x \end{bmatrix}$
 - c montrer que la fonction g^{-1} est dérivable sur [0, 1] et que $[g^{-1}]$ (x) = $\frac{1}{\sqrt{2x-x^2}}$