Mathématiques		Devoir de Synthèse n°1	
Lycée Pilote Monastir			
4 ^{éme} X ₂	0 7-12-2011	Durée : 2 heures	Prof :Yacoubi hamda

Exercice \mathcal{N} 1: (3 points)

Donner la réponse exacte (aucune justification n'est demandée)

1) Si u est une racine sixième de –i et v est une racine cubique de i

Alors (uv) est une racine sixième de :

a) 1

- b) i
- c) -i
- 2) Soit f une fonction continue et négative sur $[2; +\infty[$ Vérifiant f(2)=0 et sa courbe admet une demi tangente verticale au point d'abscisse 2 dirigée vers le bas, alors

$$\lim_{x \to 2^+} \frac{\sqrt{-f(x)}}{x - 2} =$$

- b) +∞
- c) 0
- 3) Soit f une fonction dérivable sur]0; $+\infty$ [alors la dérivé de la fonction $F:x\mapsto f\left(\frac{1}{x+1}\right)$ est :

a)
$$x \mapsto f'\left(\frac{1}{x+1}\right)$$
 b) $x \mapsto \frac{1}{(x+1)^2}f'\left(\frac{1}{x+1}\right)$ c) $x \mapsto \frac{-1}{(x+1)^2}f'\left(\frac{1}{x+1}\right)$

Exercice \mathcal{N}^2 : (4 points)

Soit θ un réel de l'intervalle $[0; \pi] \setminus \left\{\frac{\pi}{4}\right\}$

- 1) Résoudre dans \mathbb{C} l'équation $z^2 2iz 1 2i = 0$
- 2)a)Vérifier que $\left[e^{i\left(\theta+\frac{\pi}{4}\right)}\right]^2=ie^{2i\theta}$
 - b) Résoudre dans \mathbb{C} l'équation $z^2 2iz 1 ie^{2i\theta} = 0$
- 3) Dans le plan complexe muni d'un repère orthonormé $(0, \vec{u}, \vec{v})$ on désigne par A,B,C et D les points d'affixes respectives 2i , $e^{i\left(\theta+\frac{\pi}{4}\right)}+i$, $i-e^{i\left(\theta+\frac{\pi}{4}\right)}$ et i , soit ϕ le cercle de centre D et de rayon 1
- a)Calculer BC en déduire que [BC] est un diametre de φ
 - b) Montrer que OBAC est un rectangle

Exercice $\mathcal{N}^{\circ 3}$:(4, 5points)

1) Déterminer l'ensemble E des nombre complexes z tel que $|z+1|^2-(z+1)\neq 0$

2) Pour tout nombre complexe z de E, on pose
$$z' = \frac{2i|z|^2}{|z+1|^2 - (z+1)}$$

Montrer que pour tout z de E on a $z' = \frac{2iz}{z+1}$

3) Dans le plan complexe muni d'un repère orthonormé $(0, \vec{u}, \vec{v})$ on considère les points A (-1), M (z) et M'(z')

Montrer que M appartient au cercle ϕ de centre $\,$ o et de rayon 2. Si et seulement si M appartient $\,$ à la médiatrice du segment $\,$ [OA]

4) Déterminer l'ensemble des points M(z) tel que z' soit réel

Exercice N°4: (4 points)

Soit la fonction définie sur $]-\infty, -2]$ par $f(x) = x + 3 - \sqrt{x^2 - 4}$

1) Etudier la dérivabilité de f à gauche en -2 .Interpréter graphiquement le résultat.

2) Déterminer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} (f(x)-2x)$. Interpréter graphiquement le résultat.

3)a)Justifier que f est derivable sur $]-\infty; -2[$ et calculer f'(x)

b) Dresser le tableau de variation de f

4) a)Montrer que l'équation f(x)-x=0 admet dans $]-\infty;-2[$ une seule solution α Vérifier que $\alpha\in]-4;-3[$

b) Déterminer alors le signe de f(x) - x sur $]-\infty; -2[$

Exercice $\mathcal{N}^{\circ}5:(4,5 \text{ points})$

Soit f la fonction définie sur \mathbb{R}^* par $\begin{cases} f(x) = \frac{\sqrt{1+x^2}-1}{x} & \text{si } x < 0 \\ f(x) = \frac{x^3 \sin\left(\frac{\pi}{x}\right)}{1+x^2} & \text{si } x > 0 \end{cases}$

1)a)Montrer que pour tout x > 0 on $a : |f(x)| \le x^3$

b) En déduire la limite de f à droite en $\mathbf{0}$

c)Montrer que f est prolongeable par continuité en 0 et définir son prolongement

2) a) Calculer la limite de f en $-\infty$

b) Montrer que $\lim_{x \to +\infty} f(x) = \pi$

3) Soit g la fonction définie sur] $-\infty$; 1[par $g(x) = f\left(\sqrt{\frac{1}{1-x}}\right)$

a)Montrer que g est continue sur $]-\infty;1[$

b) Calculer la limite de g à gauche en 1 et la limite de g en $(-\infty)$