Lycée secondaire Ettaoufik Sousse

Enseignant: M' FERSI Lotfi

Date :10/12/2014

Devoir de synthèse N°1

Niveau:4 ème sc.exp

Nombre de pages : 2

Durée : 2h

MATHEMATIQUES

 $\overline{\mathcal{NB}}$: L'utilisation de <u>la calculatrice personnell</u>e est autorisée, cependant son <u>échange est strictement interdit.</u>

EXERCICE N° 1(3 pts)

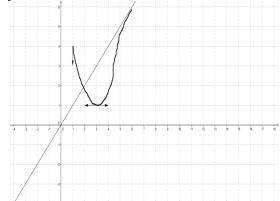
Pour chacun des énoncés suivants, dire s'il est vrai ou faux en justifiant la réponse :

- 1) Le plan complexe est muni d'un repère orthonormé $(0; \vec{u}; \vec{v})$.
 - a) Si A est B sont les points dont les affixes sont les solutions dans ¢ de l'équation : 250z²- 1000iz + 1014-11015i =0, alors le milieu de [AB] est K(0;2).
 - **b)** L'ensemble des points M(z) tel que $|z| = |\overline{z} 2i|$ est la droite y=2.
- 2) Si f est une fonction dérivable sur IR* et g(x) = $f(\frac{1}{x})$, alors $g'(x) = -\frac{1}{x} f'(\frac{1}{x})$.
- 3) On donne ci-contre la courbe ζ d'une fonction f définie sur $[1;+\infty[$ d'un repère orthonormé $(0;\vec{u};\vec{v})$.

a)
$$\lim_{x \to 3} \frac{f(x) - 1}{x - 3} = \frac{1}{3}$$

b)
$$\lim_{x \to 1^+} \frac{f(x) - 4}{x - 1} = +\infty$$

$$\mathbf{c)} \lim_{x \to +\infty} \frac{1}{f(x) - x} = +\infty$$



EXERCICE N° 2 (6 pts)

- **1) a)** Calculer (1+3i)².
 - **b)** Résoudre dans \mathbb{C} l'équation $z^2 (3+i)z + 4 = 0$.
- 2) On considère dans $\$ l'équation (E) : z^3 -(4+i) z^2 +(7+i)z-4 =0.
 - a) Montrer que l'équation (E) admet une solution réelle qu'on déterminera .
 - b) Résoudre alors (E).
- 3) Dans le plan complexe muni d'un repère orthonormé $(0; \vec{u}; \vec{v})$, on considère les points A et B d'affixes respectives $z_1 = 2 + 2i$ et $z_2 = 1 i$.
 - a) Ecrire sous forme exponentielle $\mathbf{z}_{_1}$ et $\mathbf{z}_{_2}$.

- **b)** Déterminer le module et un argument de $\frac{z_1}{z_2}$
- c) En déduire que le triangle OAB est rectangle en O.
- **4)a)** Mettre sous forme trigonométrique et algébrique le nombre $e^{2i\frac{\pi}{3}}$. z_1
 - **b)** En déduire que $\cos \frac{11\pi}{12} = -\frac{\sqrt{2} + \sqrt{6}}{4}$ et $\sin \frac{11\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$.

EXERCICE N° 3 (5 pts)

Soit θ un réel dans $[0; \pi[$. On considère dans \mathbb{C} l'équation

(E):
$$(1-i)z^2 - 2(1+e^{i\theta})z + (1+i)(1+e^{i\theta})^2 = 0$$
.

- 1) a) Résoudre l'équation (E).
 - b) Ecrire les deux solutions sous forme exponentielle.
- **2)** Soient M_1 et M_2 les points d'affixes respectives $z_1 = 1 + e^{i\theta}$ et $z_2 = i(1 + e^{i\theta})$. Déterminer l'ensemble des points M_1 lorsque θ décrit 0; π [.
 - **3)a)** Montrer que le triangle OM₁M₂ est isocèle rectangle en O.
 - **b)** Soit B le point d'affixe 2i, déterminer le réel pour que OM_1BM_2 soit un carré.

EXERCICE N° 4 (6 pts)

Soit f la fonction définie sur IR par f(x) = 1+ $\frac{x}{\sqrt{1+x^2}}$ et ζ sa courbe dans un

repère orthonormé $(0; \vec{u}; \vec{v})$.

- 1)a) Calculer $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$. Interpréter graphiquement.
 - **b)** Vérifier que f'(x) = $\frac{1}{(1+x^2)\sqrt{1+x^2}}$ et dresser le tableau des variations de f.
 - c) Déterminer f(IR).
- **2)** Montrer que le point I(0;1) est un point de ζ et qu'il est un centre de symétrie de ζ .
- **3)a)** Montrer que la fonction définie par g(x) = f(x) + x est strictement croissante sur IR.
 - **b)** En déduire que l'équation f(x) = -x admet dans IR une solution unique α , puis que $-1 < \alpha < 0$.
 - **c)** Vérifier que $\sqrt{1+\alpha^2} = \frac{-\alpha}{\alpha+1}$.
 - **4)** Montrer que les droites $\Delta : y = x$ et $\Delta' : y = x+2$ sont deux asymptotes obliques à la courbe ζ' de la fonction g.