DEVOIR DE SYNTHESE N° 1

Mde skhiri - Mr Hergli - Mr Ben Mansour

MATHEMATIQUE Durée 2H

EXRCICE Nº1: (6.5 points)

Dans l'annexe ci-jointe (Figure 1-page 3) On a trace' dans un repère orthonormé $(0,\vec{l},\vec{j})$ la courbe (C) d'une fonction f définie et deux fois dérivable sur $]-\infty$, -1[et sur]-1, $+\infty[$

On sait que la courbe (C) admet une asymptote oblique au voisinage de $+\infty$ d'équation : $y=\frac{3}{2}x-1$, une asymptote verticale d'équation x=-1 et une asymptote horizontale d'équation y=0 au voisinage de $-\infty$ et deux tangentes en -2 et en 0.

En s'aidant de la figure 1 et aux informations précédentes, répondre aux questions suivantes :

- 1) a- Dresser le tableau de variation de f sur IR- $\{-1\}$ et déterminer $f(]-\infty$, -2])
- $b\text{-} \ d\acute{e}terminer} \quad \lim_{x \to +\infty} \ \frac{f(x)}{1-x}, \quad \lim_{x \to -2} \ \frac{f(x)+1}{x+2} \ , \\ \lim_{x \to -1^-} \ \frac{f(x)}{x+1} \ \ et \ \lim_{x \to 0} \ \frac{f(x)}{x} \ . \ D\acute{e}duire} \quad \lim_{x \to 0} \ \frac{f'(x)-0.5}{x}$
- c-Montrer qu'il existe $c \in [0.1]$ tel que f'(c) = 1
- 2) Soit g la restriction de f sur]-1, $+\infty[$
- a-Montrer que g admet une fonction réciproque g définie sur un intervalle J que l'on précisera
- b-Déterminer (g⁻¹)' (o)
- c-Tracer dans le même annexe (figure 2) la courbe de g $^{\mbox{\tiny -1}}$

EXRCICE N°2: (7points)

- 1)a-Développer (1+i)² puis résoudre dans \mathbb{C} l'équation : $z^2-2z+1-i=0$
- b-Vérifier que i est une solution de l'équation (E) : $z^3-(2+i)\,z^2+(1+i)z-(1+i)=0$

et chercher les autres solutions de (E)

- 2)On pose $a = 1 + \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$; $b = 1 \frac{\sqrt{2}}{2} i\frac{\sqrt{2}}{2}$
- a-Montrer que $|a| = \sqrt{2 + \sqrt{2}}$ et que ab = 1 i
- b-Montrer que $1+\cos\varphi+i\sin\varphi=2\cos\frac{\varphi}{2}\left(\cos\frac{\varphi}{2}+i\sin\frac{\varphi}{2}\right)$, $\forall\varphi\epsilon$ IR

- d-Déterminer la forme exponentielle de b
- 3) Dans le plan complexe rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A et B d'affixes respectives a et b
- a) Déterminer c l'affixe du point C sachant que OACB est un parallélogramme
- b) Déterminer une mesure de l'angle $(\overrightarrow{OA}, \overrightarrow{OB})$. En déduire la nature du quadrilatère OACB puis calculer son aire

Exercice n°3 (6.5 points)

Soit f la fonction définie sur $[1,+\infty[$ par $f(x) = \sqrt{x^2 - 2x + 5}$

- 1)a- Dresser le tableau de variation de f

- b-Montrer que f admet une fonction réciproque noté f^{-1} définie sur un intervalle J que l'on précisera 2)a-Montrer que pour tout x de J on a : $f^{-1}(x) = 1 + \sqrt{x^2 4}$ b-Montrer que la droite d'équation : y = x + 1 est une asymptote oblique a la courbe de f^{-1} au voisinage de 3)Soit g la fonction définie sur $[0, \frac{\pi}{2}[$ par $g(x) = f^{-1}(\frac{2}{\cos x})$
- 3) Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $g(x) = f^{-1}\left(\frac{2}{\cos x}\right)$
- a-Déterminer $\lim_{x \to \infty} g(x)$

b-Montrer que pour tout x de $\left[0, \frac{\pi}{2}\right]$; $g(x) = 1 + 2 \tan x$

- c-Montrer que l'équation : g(x) = 2x + 2 admet une unique solution \propto dans $\left[0, \frac{\pi}{3}\right]$
- d-Montrer que $\forall x \in \left[0, \frac{\pi}{3}\right]$, $2 \le g'(x) \le 8$, déduire que $\frac{1}{6} \le \infty$
- 4)a-Montrer que g réalise une bijection de $\left[0, \frac{\pi}{2}\right[\text{ sur } \left[1, +\infty\right]$
- b-Montrer que g^{-1} est dérivable sur $[1,+\infty[$ et que pour tout x de $[1,+\infty[$; $(g^{-1})'(x) = \frac{2}{x^2-2x+5}$

4 S C 1 + 2 + 3

Fig 1

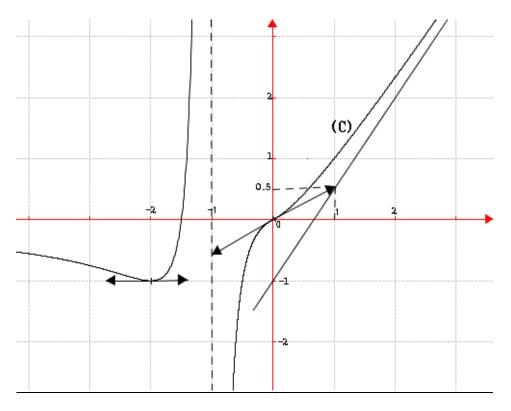


Fig 2

