

LYCÉE OUED ELLIL

DEVOIR DE SYNTHÈSE N° 1 MATHÉMATIQUES

CLASSES: 4^{IEME} ANNÉE SECONDAIRE

SECTION: SCIENCES EXPÉRIMENTALES

DURÉE: 2 HEURES

PROF: BELLASSOUED MOHAMED

ANNÉE SCOLAIRE: 2017-2018

EXERCICE 1: 3 POINTS

BAREME

0.5

0.5

0.5

0.5

0.75

0.5

0.75

0.5

0.75

0.75

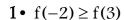
0.75

0.5

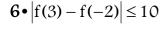
0.75

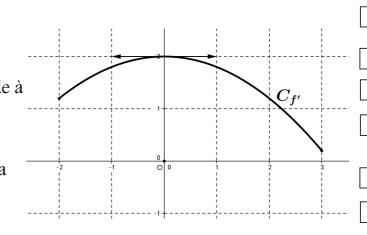
Soit f une fonction deux fois dérivable sur l'intervalle [-2;3]. On donne ci-contre la représentation Graphique de <u>la fonction dérivée</u> f' de f

Répondre par vrai ou faux sur la feuille annexe. Aucune justification n'est demandée..



- **2•** f est une bijection de [-2;3] sur f ([-2;3])
- $3 \cdot$ La courbe C_f admet une seule tangente parallèle à L'axe des abscisses .
- 4•f admet un extremum local en 0.
- 5•Le point A(0;f(0)) est un point d'inflexion de la Courbe $C_{\mathbf{f}}$





EXERCICE 2: 7 POINTS

Le plan est rapporté a un repère orthonormé $(0, \vec{i}, \vec{j})$

Soit f la fonction définie sur $[0,1[parf(x)] = \sqrt{\frac{x}{1-x}}]$ et C_f sa courbe représentative

- 1-a- Etudier la dérivabilité de f a droite de 0 . interpréter graphiquement le résultat .

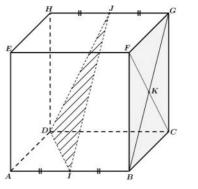
 - **b** Montrer que la droite Δ : x = 1 est une asymptote verticale à la courbe \mathcal{C}_f
 - c ~ Montrer que f est dérivable sur]0,1[et que f'(x) = $\frac{1}{2(1-x)^2 \sqrt{\frac{x}{1-x}}}$
- **2-a-** Montrer que f est une bijection de [0,1[sur $[0,+\infty[$. On note f^{-1} sa fonction réciproque
- **b**-Calculer $f^{-1}\left(\frac{1}{2}\right) \operatorname{et}(f^{-1})'\left(\frac{1}{2}\right)$

a-Vérifier que $g(x) = \tan x$

- c-Vérifier que f^{-1} est dérivable $sur[0,+\infty[$
- 3-Montrer que pour tout $x \in [0, +\infty[$ on a : $f^{-1}(x) = \frac{x^2}{1+x^2}$
- 4~ La courbe \mathcal{C}_f est tracée dans la feuille annexe .
- Tracer soigneusement sur la feuille annexe la courbe $\mathcal{C}_{f^{-1}}$ de f $^{-1}$
- 5-On considère la fonction g définie sur $\left[0, \frac{\pi}{2}\right]$ par $g(x) = f(\sin^2 x)$
 - **b**~ Montrer que g est une bijection de $\left[0, \frac{\pi}{2}\right]$ sur $\left[0, +\infty\right[$. On note g^{-1} sa fonction réciproque
 - c~ Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right]$ on a : $\left(g^{-1}\right)'(x) = \frac{1}{1+x^2}$

EXERCICE 3: 6 POINTS

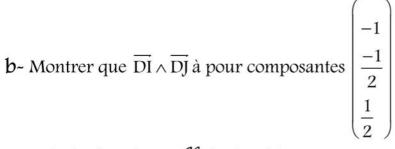
- La figure 1 ci-contre est un cube ABCDEFGH
- I et J les milieux respectives des segments [AB] et [GH]
- K désigne le centre de la face BCGF



BAREME

L'espace est rapporté a un repère orthonormé direct $\mathscr{R}=(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$

1-a-Calculer les coordonnées des points D, I, J et K



0.5

0.5

- c~ Calculer le volume $\mathscr U$ du tétraèdre EDIJ
- **2**~On désigne par $\mathscr P$ le plan défini par les points D , I et J Montrer qu'une équation cartésienne du plan $\mathscr P$ est : $\mathscr P$: 2x + y z 1 = 0

0.5

- 3-Soit Δ la droite passant par E et orthogonal au plan \mathscr{P} a-Donner une équation paramétrique de la droite Δ
 - **b**-Vérifier que K est un point de Δ

c~ Soit le point $L = \Delta \cap \mathscr{D}$. Montrer que les coordonnées du point L sont $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$

0.25

0.5

d-Vérifier que le point L est le centre de gravité du triangle BEG

0.25

4~ Soit $\boldsymbol{\mathcal{S}}$ L'ensemble des points M(x,y,z) de l'espace dont les coordonnées vérifient :

$$x^{2} + y^{2} + z^{2} - 2x - y - z + \frac{4}{3} = 0$$

a-Montrer que $\boldsymbol{\mathcal{S}}$ est une sphère de centre K et dont on précisera le rayon r

0.5

b-Vérifier que le point L est un point de S

0.25

c~En déduire que plan $\mathscr P$ est tangent au sphère $\boldsymbol{\mathcal S}$

0.75

d-Déterminer l'équation cartésienne du plan $\mathcal Q$ parallèle au plan $\mathcal P$ et tangent au sphère $\mathcal S$

0.75

EXERCICE 4: 4 POINTS

1-a-Donner l'écriture exponentielle du nombre complexe $u = 4\sqrt{2}(-1+i)$

0.75

b-En déduire que les racines cubiques de u sont : $u_0 = 2e^{i\frac{\pi}{4}}$; $u_1 = 2e^{i\left(\frac{11\pi}{12}\right)}$; $u_2 = 2e^{i\left(\frac{-5\pi}{12}\right)}$

0.75

2~a~Enoncer les formules d'Euler

0.5

b-Soit θ un réel tel que $\theta \neq 2k\pi$; $k \in \mathbb{Z}$. Montrer que $\frac{1}{1-e^{i\theta}} = \left(\frac{1}{2}\right) + \left(\frac{1}{2}\cot\frac{\theta}{2}\right)i$ 3-Résoudre dans \mathbb{C} l'équation $\mathbf{\mathcal{E}}$: $(2z-1)^3 = 4\sqrt{2}(-1+i)z^3$

1

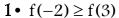
On donnera les solutions sous formes cartésiennes

Librairie Devoir.TN

EXERCICE 1: 3 POINTS

Soit f une fonction deux fois dérivable sur l'intervalle [-2;3]. On donne ci-contre la représentation Graphique de la fonction dérivée f' de f

Répondre par vrai ou faux. Aucune justification n'est demandée...



- 2• f est une bijection de [-2;3] sur f ([-2;3])
- 3•La courbe C_f admet une seule tangente parallèle à L'axe des abscisses .
- 4•f admet un extremum local en O.
- 5•Le point A(0;f(0)) est un point d'inflexion de la Courbe C_f
- $6 \cdot |f(3) f(-2)| \le 10$

					0.5
					0.5
		1+		$C_{f'}$	0.5
					0.5
-2 	-1 -1	0 0	1	2 3	0.5
		1 +			0.5

QUESTION			
REPONSE (V OU F)			

EXERCICE 2:

