

Lycée TheLepTe

2011-2012

Durée: 3heures

Devoir De synthese n°2

Niveau : 4 ème Science expérimentales

Epreuve : Mathématiques

Prof : Mhamdi Abderrazek

EX 1: (3points)

Répondre par vrai ou faux

- 1).L'équation $\ln^2(x) + 3\ln(x) 4 = 0$ admet dans 0; $+\infty$ [deux solutions distinctes
- 2).L'intégrale $\int_0^1 \frac{dt}{1+t^2}$ est comprise entre 0.5 et 1
- 3). Soit A et B deux points distincts de l'espace.

L'ensemble des points M de l'espace tel que \overrightarrow{MA} . \overrightarrow{MB} =0 est un plan

EX 2:(6points)

- 1).soit g la fonction définie sur]0. $+\infty$ [par g(x)=1-x²-ln(x)
 - a).Dresser le tableau de variation de g sur]0. +∞[
 - b).calculer g(1) en déduire le signe de g(x) $sur \]0. + \infty[$
- 2). Soit f la fonction définie sur]0. $+\infty$ [par $f(x) = \frac{\ln(x)}{x} x$ et ℓ sa courbe dans un repère orthonormé $(o; \vec{\iota}; \vec{\jmath})$
 - a).montrer que f'(x)= $\frac{g(x)}{x^2}$
 - b). Dresser le tableau de variation de f sur $]0. + \infty[$
- 3).a).montrer que D : y=-x est une asymptote à ℓ
 - b).Etudier la position de **ℓ** et D
 - c).Tracer Det ?
- 4). Calculer l'aire du domaine du plan limité par les droites d'équations :x=1 ;x=e et la droite D et la courbe ℓ .

EX 3: (5points)

Soit h la fonction définie sur $[0. +\infty[$ par $h(x) = x \ln(x)$ si x>0 et h(0)=0

- 1). Montrer que h est continue à droite en 0
- 2).a).Etudier la dérivabilité de h à droite en 0
 - b).interpréter ce résulta graphiquement
- 3).a).Dresser le tableau de variation de h
 - b). Tracer la courbe Γ de h dans un repère orthonormé $(o; \vec{t}; \vec{j})$
- c). Calculer l'aire du domaine du plan limité par les droites d'équations : $x=e^{-1}$;x=1 et l'axe des abscisse et la courbe Γ .

EX 4: (6points)

Soit(o; \vec{i} ; \vec{j} ; \vec{k}) un ROND de l'éspace et A(1;2;3); B(2;3;4); C(-2;3;5)

- 1)a). Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$
- b). En déduire que A ;B et C forment un seul plan d'équation cartésienne : x-5y+4z-3=0
- 2). Montrer que le plan Q : x+y+z-6=0est perpendiculaire à P suivant une droite à préciser.
- 3).soit S: $\{M(x;y;z) \text{ tel que } x^2+y^2+z^2-2x-4y-6z+11=0\}$
 - a). Montrer que S est la sphère de centre A et de rayon AB
 - b). Caractériser $S \cap P$; $S \cap Q$ et $S \cap (AB)$.

BON TRAVAII

Lycée TheLepTe 2011-2012

CorreCtion du devoir de synthese n°2

Niveau: 4 ème Science expérimentales

Mathématiques Epreuve: Prof Mhamdi Abderrazek

EX 1:(3points)

1).Vrai. 2).Vrai. 3).Faux.

EX 2:(6points)

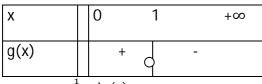
1).a).g'(x)=-2x-
$$\frac{1}{x}$$
<0

$$\lim_{0^+} g = +\infty$$
; $\lim_{+\infty} g = -\infty$;

b).
$$g(1)=1-1^2-ln(1)=0-0=0$$

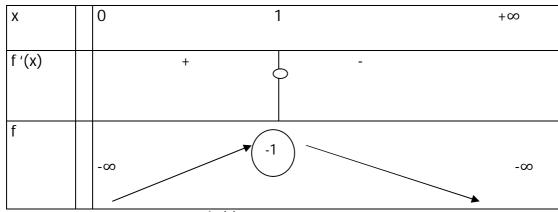
Signe de g(x):

Х	0 +∞
g'(x)	
g	+∞
	-∞



2).a).f'(x)=
$$\frac{\frac{1}{x}x-\ln(x)}{x^2}$$
-1= $\frac{1-\ln(x)-x^2}{x^2}$ = $\frac{g(x)}{x^2}$

b).signe(f(x))=signe(g(x)) (car $x^2>0$)et $\lim_{0^+} f = -\infty$; $\lim_{+\infty} f = -\infty$; et f(1)=-1

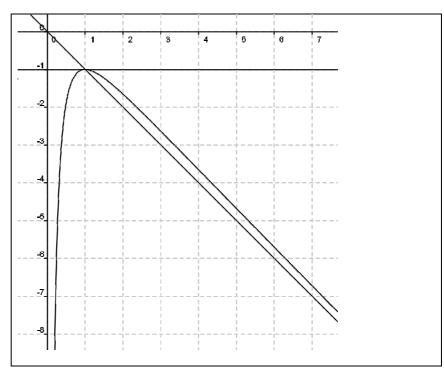


3).a). $\lim_{x\to +\infty} f(x)$ - (-x) = $\lim_{x\to +\infty} \frac{\ln(x)}{x}$ = 0d'où D:y = -x est une asymptote à ℓ au voisinage de +∞

b).On a f(x)-(-x)=
$$\frac{\ln (x)}{x}$$
 d'où :

Х	0	1		+∞		
f(x)-(-x)	-	C	+			
Position de	ℓ est en dessous de D		ℓ est en dessus de D			
ℓ et D	$\ell \cap D$					

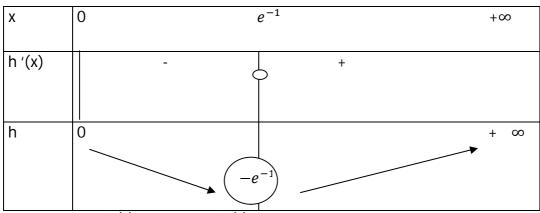
c).



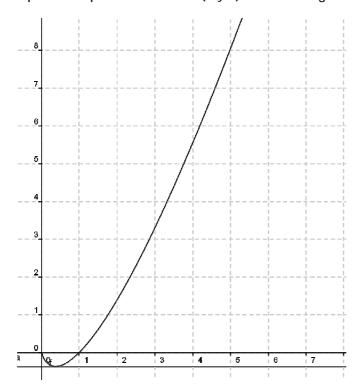
4).
$$\mathcal{A} = \int_{1}^{e} |f(x) - (-x)| dx = \int_{1}^{e} \left| \frac{\ln(x)}{x} \right| dx = \int_{1}^{e} \frac{\ln(x)}{x} dx = \left[\frac{\ln^{2}(x)}{2} \right]_{1}^{e} = \frac{1}{2} \text{ u.a}$$

EX 3:(5points):

- 1). $\lim_{x\to 0^+} h(x) = \lim_{x\to 0^+} x \ln(x) = 0 = h(0)$ signifie h est continue à droite en 0.
- 2).a). $\lim_{x\to 0^+} \frac{h(x)-h(0)}{x-0} = \lim_{x\to 0^+} \frac{x \ln(x)}{x} = \lim_{x\to 0^+} \ln(x) = -\infty$ signefie h n'est pas dérivable à droite en 0.
- b). La courbe $\,\Gamma$ de h admet au point d'abscisse 0 une de mi-tangente parallèle à (0, \vec{J})
- 3).a). $\forall x>0$ on a $h'(x)=\ln(x)+1$
 - h'(x) > 0 signifie ln(x)+1 > 0 signifie ln(x) > -1 signifie $x > e^{-1}$
- _ d'autre part on a $\lim_{+\infty} h = +\infty$ et $h(e^{-1}) = -e^{-1}$



b).On a $\lim_{x\to +\infty} \frac{h(x)}{x} = \lim_{x\to +\infty} \frac{x \ln(x)}{x} = \lim_{x\to +\infty} \ln(x) = +\infty$ donc Γ admet une branche parabolique de direction $(0\vec{j})$ au voisinage de $+\infty$



c).
$$\mathcal{A}' = \int_{e^{-1}}^{1} |h(x)| dx = \int_{e^{-1}}^{1} -x \ln(x) dx$$

On pose
$$\begin{cases} u(x) = \ln(x) \\ v'(x) = -x \end{cases} \text{ alors } \begin{cases} u'(x) = \frac{1}{x} \\ v(x) = \frac{-x^2}{2} \end{cases}$$

Donc
$$\mathcal{A}' = \left[\frac{-x^2 ln(x)}{2}\right]_{e^{-1}}^1 + \int_{e^{-1}}^1 \frac{-x^2}{2x} dx = \left[\frac{-x^2 ln(x)}{2}\right]_{e^{-1}}^1 + \left[\frac{-x^2}{4}\right]_{e^{-1}}^1 = \frac{1-3e^{-2}}{4} \text{ u.a.}$$

EX 4: (6points)

- 1).a). $\overrightarrow{AB} \wedge \overrightarrow{AC} = \vec{i} 5\vec{j} + 4\vec{k}$.
 - b). $\overrightarrow{AB} \land \overrightarrow{AC} \neq \overrightarrow{0}$ signifie \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires signifie
- 2). $\overrightarrow{N_P}$. $\overrightarrow{N_Q}$ =1-5+4=0 signifie $\overrightarrow{N_P} \perp \overrightarrow{N_Q}$ signifie P \perp Q.

.On remarque que $A \in P \cap Q$ et $C \in P \cap Q$ d'où $P \cap Q = (AC)$.

- 3).a).S: $(x-1)^2+(y-2)^2+(z-3)^2=3=(\sqrt{3})^2$ d'où S est la sphère de centre A(1,2,3) et de rayon $\sqrt{3}=AB$
 - b).i). S \cap P = le cercle ζ de centre A et de rayon $\sqrt{3}$ (car A \in P) (Pétant le plan de ζ)
 - ii). $S \cap Q = \text{le cercle } \zeta' \text{ de centre A et de rayon} \sqrt{3} (\text{car A} \in Q) (\text{Q\'etant le plan de } \zeta')$
- iii).On a A est le centre de S et B \in S donc S \cap (AB)={B ;E} où[BE] est un diamètre de S. on trouvera E(0 ;1 ;2).

BON TRAVAIL