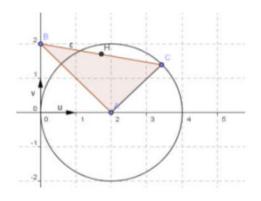
Sujet n°1

EXERCICE 1:

Le plan complexe étant muni d'un repère orthonormé (O, \vec{u}, \vec{v}) . Soit les points A et B d'affixes respectifs $z_A = 2$ et $z_B = 2i$. On désigne par \mathcal{C} le cercle de centre A et de rayon 2. Soit le point C du cercle \mathcal{C} d'affixe $z_{\mathbb{C}}$ tel que le triangle ABC soit rectangle en A. Le point H étant le milieu de [BC].



- 1) a) Déterminer graphiquement $|z_{\rm C}-z_{\rm A}|$ et arg $(z_{\rm C}-z_{\rm A})$
 - b) En déduire que $z_{\rm C} = 2\left(1 + e^{i\frac{\pi}{4}}\right)$
 - c) Donner alors la forme exponentielle de $z_{\rm C}$.
- 2) Montrer que $z_{\rm H} = (1 + \sqrt{2})e^{i\frac{\pi}{4}}$ puis calculer OH.
- 3) Soit le point M du plan d'affixe $z_{\rm M}=2+2e^{i\theta}$ où $\theta\in[0,\pi]$
 - a) Déterminer l'ensemble des points M du plan quand θ décrit $[0, \pi]$.
 - b) Déterminer la valeur de θ pour laquelle (AM) \perp (OC)

EXERCICE 2:

Dans le plan complexe P rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on donne les points A, B et C d'affixes respectifs $a = \sqrt{3} + i$, $b = i\sqrt{3} - 1$ et c = a + b.

- 1) a) Montrer que les points A et B appartiennent à un même cercle $\mathcal C$ de centre O dont on précisera le rayon.
 - b) Construire alors les points A, B et C.
- 2) Ecrire chacun des complexes a et b sous forme exponentielle.
- 3) a) Montrer que OACB est un carré.
 - b) En déduire la forme exponentielle de c.
 - c) Calculer alors $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$
- 4) a) Déterminer sous la forme exponentielle les racines cinquièmes c_0 , c_1 , c_2 , c_3 et c_4 du nombre complexe c.

Prof: Salah Hannachi

- b) Montrer que $1 + e^{i\frac{2\pi}{5}} + e^{i\frac{4\pi}{5}} + e^{i\frac{6\pi}{5}} + e^{i\frac{8\pi}{5}} = 0$
- c) En déduire que $c_0 + c_1 + c_2 + c_3 + c_4 = 0$

EXERCICE 3 :

Le plan complexe étant muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . Soit les points A(1) et B(-2i). Déterminer l'ensemble \mathcal{E} des points M(z) dans chacun des cas suivants :

1)
$$|iz-2|=|\overline{z}-1|$$
 2) $\left|\frac{z+2i}{z-1}\right|=2$ 3) $\frac{z+2i}{z-1}<0$ 4) $\frac{iz-2}{z-1}\in IR$

$$2) \left| \frac{z+2i}{z-1} \right| = 2$$

3)
$$\frac{z+2i}{z-1} < 0$$

$$4)\frac{iz-2}{z-1} \in IR$$

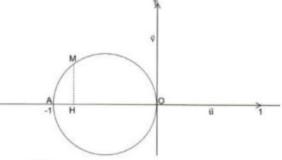
5)
$$arg\left(\frac{z+2i}{z-1}\right) \equiv \frac{\pi}{3}[2\pi]$$

5)
$$arg\left(\frac{z+2i}{z-1}\right) \equiv \frac{\pi}{3}[2\pi]$$
 6) $\overline{z} = 2i + 3e^{i2\theta}$ tel que θ décrit $[0,\pi]$

EXERCICE 4: (Bac 2011)

Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u} , \vec{v}). On considère le point A d'affixe (-1) et les points M, N et P d'affixes respectives z, z^2 et z^3 où $z \in \mathbb{C} \setminus \{-1,1\}$.

- 1) a) Montrer que (le triangle MNP est rectangle en P) si et seulement si $\left(\frac{1+z}{z}\right)$ est imaginaire pur).
 - b) On pose z=x+iy où $(x,y)\in IR^2$. Montrer que $\frac{1+z}{z}=\frac{x^2+y^2+x-iy}{x^2+y^2}$
 - c) En déduire que l'ensemble des points M tels que le triangle MNP soit rectangle en P est le cercle (Γ) de diamètre [OA], privé des points O et A.
- 2) Dans la figure ci-dessous on a tracé le cercle (Γ) et on a placé un point M d'affixe z sur (Γ) et son projeté orthogonal H sur l'axe (O, \vec{u}) . On se propose de construire les points N et P d'affixes respectives z^2 et z^3 tels que le triangle MNP soit rectangle en P.
 - a) Montrer que $(\overrightarrow{OM}, \overrightarrow{ON}) \equiv (\overrightarrow{u}, \overrightarrow{OM}) [2\pi]$ et que $(\overrightarrow{ON}, \overrightarrow{OP}) \equiv (\overrightarrow{u}, \overrightarrow{OM}) [2\pi]$
 - b) Montrer que $OH = OM^2$
 - c) Donner un procédé de construction des points N et P puis les construire.



EXERCICE 5:

1) θ étant un réel de l'intervalle] $0,\frac{\pi}{2}$ [.

On considère l'équation (E) : $z^2 - 2e^{i\theta}\cos\theta z + e^{2i\theta} = 0$

- a) Résoudre dans C l'équation (E).
- b) En déduire les solutions dans C de l'équation (E') :

$$i(\overline{z})^4 - 2e^{i(\theta + \frac{\pi}{4})}\cos\theta \,\overline{z}^2 + e^{2i\theta} = 0$$

- 2) Le plan complexe étant muni d'un repère orthonormé direct (O, \vec{u} , \vec{v}). On donne les points A et B d'affixes respectifs 1 et $e^{2i\theta}$
- a) Déterminer l'affixe du point C tel que le quadrilatère OACB soit un parallélogramme, puis vérifier que OACB est un losange.
- b) Déterminer le réel θ pour que l'aire \mathcal{A} du losange OACB soit égale à $\frac{1}{2}$

Prof: Salah Hannachi