Sujet n°3

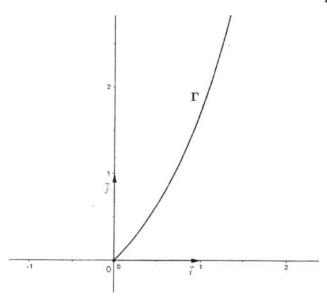
EXERCICE 1:

Soit f la fonction définie sur $[0,+\infty[$ par $f(x) = \sqrt{e^x - 1}$.

On note (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
- 2) a) Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.
 - b) Montrer que pour tout $x \in]0,+\infty[$, $f'(x) = \frac{e^x}{2\sqrt{e^x 1}}$.
 - c) Dresser le tableau de variation de f.
 - d) En déduire que $e^{X} 1 \le \sqrt{e^{X} 1}$, si et seulement si, $x \le \ln(2)$.
- 3) Montrer que le point B(ln2, 1) est un point d'inflexion de (C_f) .
- 4) Dans la figure 2 de l'annexe 2 jointe, on a tracé dans le repère $(0, \vec{i}, \vec{j})$ la courbe Γ de la fonction $x : \mapsto e^x 1$.
 - a) Etudier la position relative de (C_f) par rapport à Γ .
 - b) Tracer la courbe (C_f).
- 5) Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $g(x) = \tan(x)$.
 - a) Montrer que g réalise une bijection de $\left[0,\frac{\pi}{2}\right[\text{ sur } \left[0,+\infty\right[. \text{ On note } g^{-1} \text{ sa fonction réciproque.}\right]$
 - b) Calculer $(g^{-1})(0)$ et $(g^{-1})(1)$.
 - c) Montrer que g^{-1} est dérivable sur $\left[0,+\infty\right[$ et que $\left(g^{-1}\right)^{\cdot}\left(x\right)=\frac{1}{1+x^2}$.
 - d) Montrer que $\lim_{x\to 0^+} \frac{g^{-1}(x)}{x} = 1$.

- 6) On pose pour tout $x \in [0, +\infty[$, $F(x) = \int_0^x f(t) dt$ et $G(x) = 2(f(x) (g^{-1}o f)(x))$.
 - a) Montrer que pour tout $x \in]0, +\infty[, F'(x) = G'(x).$
 - b) En déduire que pour tout $x \in [0, +\infty[, F(x) = G(x)]$.
 - c) Soit A l'aire de la partie du plan limitée par la courbe (C_f) , la courbe Γ et les droites d'équations x=0 et $x=\ln 2$. Montrer que $A=1+\ln 2-\frac{\pi}{2}$.



EXERCICE 2:

En donne les nombres complexes $a = e^{i\frac{\pi}{6}}$, $b = e^{i\frac{2\pi}{3}}$ et $c = \sqrt{2}e^{i\frac{5\pi}{12}}$

- 1) Vérifier que $a^2 + b^2 = 0$ et que c.(a+b) = 2
- 2) On donne dans C l'équation (E): $z^2 cz + \frac{c^2}{2} = 0$
 - a- Montrer que le nombre complexe a est une solution de (E)
 - b- Déduire la deuxième solution de (E). (On pourra l'écrire sous forme exponentielle)
 - c- Vérifier que $e^{i\frac{\pi}{3}} \left(i + e^{-i\frac{\pi}{6}}\right) = i$ puis déduire que $c = e^{i\frac{\pi}{3}} \left(a^2 i\right) + i$
- 3) Dans le plan complexe rapporté à un repère orthonormé direct $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$, on donne les points I, A et C d'affixes respectives i, a^2 et c
 - a- Construire les points I et A. (On prendra 3cm comme unité graphique)

Prof: Salah Hannachi

- b- Montrer que IAC est un triangle équilatéral direct
- c- Déduire une construction de C

EXERCICE 3:

l'espace est rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$. On donne les points $A(0,0,2)\,B(-1,2,1)$, C(2,-1,1) et D(0,1,-1).

- 1) a-Déterminer $\overrightarrow{AB} \wedge \overrightarrow{AC}$
 - b- En déduire que les points A, B et C déterminent un plan P dont une équation cartésienne est x+y+z-2=0
- 2) a- Vérifier que I(1,1,0) est le centre du cercle ζ circonscrit au triangle ABC
 - b- Donner une représentation paramétrique de l'axe Δ du cercle ζ
 - c- Soit Q le plan médiateur du segment $\lceil AD \rceil$. Vérifier que $Q \cap \Delta = \{\Omega(2,2,1)\}$
- 3) Soit S la sphère de centre Ωet passant par A Ecrire une équation cartésienne de S
- 4) On désigne par R le plan d'équation z-2=0 et par ζ' l'ensemble des points $M_{\theta}(2+2\sqrt{2}cos\theta$, $2+2\sqrt{2}sin\theta$, 2) où $\theta \in [0,2\pi[$
 - a- Vérifier que $A \in \zeta'$
 - b- Montrer que $\zeta' \subset S \cap R$
 - c- Montrer que si θ décrit l'intervalle $\left[0,2\pi\right[$ alors M_{θ} varie sur un cercle que l'on précisera.
 - d-Vérifier que S est la sphère circonscrit au tétraèdre $OAKM_{\theta}$
 - e- Déterminer les valeurs de θ pour les quelles le volume du tétraèdre $\text{OAK}M_{\theta}$ est maximal.

EXERCICE 4:

I) Soit
$$f: [0,+\infty[\rightarrow IR \ qui \ \dot{a} \ x \mapsto \frac{Ln \ x}{x-Ln \ x} \ si \ x > 0 \ et \ f(0) = -1$$

1°/Soit $g:IR_{-}^{*} \rightarrow IR$ qui à $x \mapsto x$ - Ln x

Etudier les variation de $\,g\,$ et en déduire que f est définie su r $\,I\!R_{_{\! +}}$

- $2^{\circ}/a$) Montrer que f est continue sur IR_{+}
- b) Montrer que f est dérivable sur $\mathit{IR}_{\scriptscriptstyle{+}}$
- 3°/ Dresser le tableau de variation de f sur $IR_{\scriptscriptstyle +}$
- 4°/ Construire la courbe ζ de f dans un repère orthonormé (O,\vec{i},\vec{j})
- II) Soit F la primitive de f sur $[1,+\infty]$ qui s'annule en 1 (on ne cherchera pas à déterminer F(x))

Prof: Salah Hannachi

1°/Montrer que pour tout
$$x \ge 1$$
: $f(x) \ge \frac{Ln x}{x}$

2°/En déduire que pour tout
$$x \ge 1$$
, $F(x) \ge \frac{1}{2} (Ln x)^2$

3°/ Dresser le tableau de variation de F.

4°/Soit U la suite réelle définie sur
$$IN^*$$
 par : U_n = $F(n+1)$ - $F(n)$

- a) Montrer que pour tout $n \ge 3$: $f(n+1) \le U_n \le f(n)$ (on pourra utiliser le T.A.F)
- b) Montrer alors que la suite U est convergente et préciser sa limite.
- c) On pose, pour tout $n \ge 2$: $S_n = \sum_{k=1}^{n-1} U_k$ Exprimer S_n à l'aide de F puis déduire la limite de S_n en $+\infty$.

EXERCICE 5:

Pour tout entier naturel non nul n, on considère la fonction f_n définie sur [0,1] par f_n (x) = $e^{-x} - x^{2n+1}$

1°/ Etudier les variations de f_n

2°/ Montrer que pour tout entier naturel non nul n.

l'équation f_n (x) = 0 admet une unique solution U_n et que $U_n \in \cite{None of the control of the contro$

On définit ainsi sur $\operatorname{\mathbb{N}}^*$, une suite ($U_{\scriptscriptstyle n}$)

- 3°/ a) Soit n un entier naturel non nul et x un réel de l'intervalle]0,1[. Comparer les réels $f_{n+1}(x)$ et f_n (x)
 - b) Montrer que pour tout $n \in \mathbb{N}^*$, $f_n(U_{n+1}) < 0$
 - c) Montrer que la suite ($U_{\scriptscriptstyle n}$) est croissante et en déduire qu'elle est convergente.

Prof: Salah Hannachi

4°/ a) Montrer que pour
$$n \ge 1$$
, Ln(U_n) = $-\frac{U_n}{2n+1}$

b) Calculer la limite de la suite $U_{\scriptscriptstyle n}$