Sujet n°2

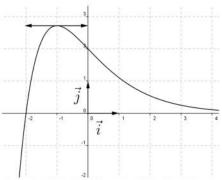
EXERCICE 1:

On considère la fonction f définie sur $\left[0, \frac{\pi}{4}\right[$ par : f(x) = -ln(1 - tanx) et on désigne par (C) sa courbe représentative dans un repère orthonormé (O, $\vec{\iota}$, \vec{j}).

- 1) Montrer que f est dérivable sur $\left[0, \frac{\pi}{4}\right]$ et calculer f'(x) pour tout $x \in \left[0, \frac{\pi}{4}\right]$
- 2) Dresser le tableau de variation de f puis tracer la courbe (C).
- 3) a) Montrer que f admet une fonction réciproque f^{-1} définie sur $[0, +\infty[$.
 - b) Montrer que la fonction f^{-1} est dérivable sur $[0, +\infty[$ et que pour tout $x \ge 0$ on a : $(f^{-1})'(x) = \frac{e^x}{2e^{2x} 2e^x + 1}$
- 4) a) Montrer que pour tout $n \in IN$, l'équation f(x) = n admet une unique solution $\alpha_n \in \left[0, \frac{\pi}{4}\right]$.
 - b) Montrer que la suite (α_n) est croissante et qu'elle est convergente.
 - c) Calculer $\lim_{n\to+\infty} \alpha_n$

EXERCICE 2:

On a représenté ci-contre dans un repère orthonormé (O, $\vec{\iota}$, \vec{j}) la courbe (C) d'une fonction f solution de l'équation différentielle (E) : $y' + y = e^{-x}$



- La courbe (C) admet au $v(-\infty)$ une branche parabolique de direction (O, \vec{j}) .
- L'axe des abscisses est une asymptote à la courbe (C) au $v(+\infty)$.
- 1) Par une lecture graphique déterminer :

$$f(0)$$
, $f'(-1)$, $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$

- 2) Montrer que f'(0) = -1. En déduire une équation de la tangente T à (C) au point d'abscisse 0
- 3) a) Montrer que f(-1) = e
 - b) Calculer l'aire \mathcal{A} de la partie du plan limitée par (C), l'axe (O, $\vec{\iota}$) et les droites d'équation : x = -1 et x = 0.
- 4) a) Montrer que la fonction $u: x \mapsto xe^{-x}$ est une solution de l'équation (E).
 - b) Résoudre l'équation différentielle $(E_0): y' + y = 0$
 - c) Montrer qu'une fonction g dérivable sur IR est solution de (E) si et seulement si (g-u) est solution de (E_0)

Prof: Salah Hannachi

d) Déterminer alors la fonction f.

EXERCICE 3: « Bac session principale 2017 »

Soit f la fonction définie sur $[0,+\infty[$ par $f(x) = \sqrt{e^x - 1}$.

On note (C_f) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
- 2) a) Montrer que $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.
 - b) Montrer que pour tout $x \in]0, +\infty[$, $f'(x) = \frac{e^x}{2\sqrt{e^x 1}}$.
 - c) Dresser le tableau de variation de f.
 - d) En déduire que $e^{X} 1 \le \sqrt{e^{X} 1}$, si et seulement si, $x \le \ln(2)$.
- 3) Montrer que le point B(ln2, 1) est un point d'inflexion de (Cf).
- 4) Dans la figure 2 de l'annexe 2 jointe, on a tracé dans le repère $(0, \vec{i}, \vec{j})$ la courbe Γ de la fonction $x : \mapsto e^x 1$.
 - a) Etudier la position relative de (C_f) par rapport à Γ .
 - b) Tracer la courbe (C_f).
- 5) Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right[\text{ par } g(x) = \tan(x).$
 - a) Montrer que g réalise une bijection de $\left[0,\frac{\pi}{2}\right[\text{ sur } \left[0,+\infty\right[. \text{ On note } g^{-1} \text{ sa fonction réciproque.}\right]$
 - b) Calculer $(g^{-1})(0)$ et $(g^{-1})(1)$.
 - c) Montrer que g^{-1} est dérivable sur $\left[0,+\infty\right[$ et que $\left(g^{-1}\right)^{\cdot}\left(x\right)=\frac{1}{1+x^2}$.
 - d) Montrer que $\lim_{x\to 0^+} \frac{g^{-1}(x)}{x} = 1$.
- 6) On pose pour tout $x \in [0, +\infty[$, $F(x) = \int_0^x f(t) dt$ et $G(x) = 2(f(x) (g^{-1}o f)(x))$.
 - a) Montrer que pour tout $x \in]0, +\infty[$, F'(x) = G'(x).
 - b) En déduire que pour tout $x \in [0, +\infty[, F(x) = G(x)]$.
 - c) Soit A l'aire de la partie du plan limitée par la courbe (C_f) , la courbe Γ et les droites d'équations x=0 et $x=\ln 2$. Montrer que $A=1+\ln 2-\frac{\pi}{2}$.

7) Soit n un entier naturel tel que $n \ge 2$.

On désigne par f_n la fonction définie sur $[ln(n), +\infty[$ par $f_n(x) = \sqrt{e^x - n}$.

On note (C_n) sa courbe représentative dans le repère orthonormé (O, \vec{i}, \vec{j}) .

a) Soit G_n la fonction définie sur $\left[\ln(n), +\infty\right[$ par $G_n(x) = 2\left(f_n(x) - \sqrt{n} g^{-1}\left(\frac{f_n(x)}{\sqrt{n}}\right)\right)$.

Montrer que pour tout $x \in [\ln(n), +\infty[$, $G_n(x) = \int_{\ln(n)}^x f_n(t) dt$.

b) Vérifier que pour tout $x \ge \ln(n)$, $\sqrt{e^x - n} < \sqrt{e^x - 1}$.

En déduire que pour tout $x \ge \ln(n)$, $f_n(x) \le e^x - 1$.

- c) Soit A_n l'aire de la partie du plan limitée par la courbe (C_n) , la courbe Γ et les droites d'équations $x = \ln(n)$ et $x = \ln(n+1)$. Montrer que $A_n = 2\sqrt{n}$ $g^{-1}\left(\frac{1}{\sqrt{n}}\right) + \ln\left(\frac{n}{n+1}\right) 1$.
- d) Déterminer $\lim_{n \mapsto +\infty} A_n$.

