Exercice1:

Soit z un nombre complexe.

Montrer que : $1 + z + z^2 \in \mathbb{R} \Leftrightarrow z \in \mathbb{R} \text{ ou } \operatorname{Re}(z) = -\frac{1}{2}$.

Exercice2:

Dans le plan P rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives 1-i, -2 et 2+2i.

- 1. Placer les points A, B et C dans le repère (O, \vec{u}, \vec{v}) .
- 2. Montrer que le triangle ABC est isocèle rectangle.
- 3. Déterminer l'affixe du point D pour que ABCD soit un carré.
- $\textbf{4. Déterminer et construire les ensembles } \ \textbf{E}_{1} = \left\{ \textbf{M}\left(z\right) \in \textbf{P} \ / \ \frac{z-1+i}{z-2-2i} \in \mathbb{R} \right\} \ \ \textbf{et } \ \textbf{E}_{2} = \left\{ \textbf{M}\left(z\right) \in \textbf{P} \ / \ \left|z-1+i\right| = \left|z+1+3i\right| \right\}$

Exercice3:

Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A(1) et B(-i).

A tout point M d'affixe $z \neq -i$, on associe le point M'd'affixe $z' = \frac{1-z}{1-iz}$.

- 1. Déterminer l'ensemble des points M(z) tels que $\left|z'\right|=1$.
- **2.** Montrer que pour tout $z \in \mathbb{C} \setminus \{-i\}$, $z'+i = \frac{-1+i}{z+i}$
- **3.a.** Montrer que pour tout point M distinct de B, $BM \times BM' = \sqrt{2}$.
- b. En déduire que si M appartient au cercle C de centre B et de rayon 1 alors M'appartient au cercle C'dont on précisera le centre et le rayon.

Exercice4:

On considère les nombres complexes $z_1 = 1 + i$, $z_2 = \sqrt{3} - i$ et $Z = z_1.z_2$.

- **1.** Ecrire les nombres complexes z_1, z_2 et Z sous forme exponentielle.
- 2. Donner l'écriture cartésienne de Z.
- 3. En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice5:

Dans le plan complexe rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on désigne par A et B les points d'affixes respectives i et 2.

A tout point M du plan d'affixe z (z \neq 2), on associe le point d'affixe z' telle que z' = $\frac{z-i}{iz-2i}$.

- **1.a.** Montrer que $|z'| = \frac{AM}{BM}$
 - b. En déduire que lorsque M décrit la médiatrice du segment [AB], le point M'décrit un cercle que l'on précisera.
- 2. On suppose que $z \neq i$ et $z \neq 2$.
- **a.** Montrer que $(\overrightarrow{u}, \overrightarrow{OM'}) \equiv (\overrightarrow{BM}, \overrightarrow{AM}) \frac{\pi}{2} [2\pi]$
- b. En déduire que si M appartient à la droite (AB), le point M'appartient à une droite que l'on déterminera.

Exercice6

Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B d'affixes respectives $z_A = \frac{-1 + i\sqrt{3}}{2}$ et $z_B = \frac{\sqrt{3} + i}{2}$.

- 1. Ecrire sous forme exponentielle chacun des nombres complexes z_A et z_B .
- 2. On désigne par M le point d'affixe $Z_M = Z_A + Z_B$.
 - a. Montrer que le quadrilatère OAMB est un carré.
 - b. Donner l'écriture trigonométrique de Z_M.
 - **c.** Calculer alors $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.

Exercice7:

1. Soit $\theta \in [0, 2\pi[$.

Mettre sous forme exponentielle les nombres complexe $(1+i)e^{i\theta}$ et $(1-i)e^{i\theta}$.

2. Dans le plan complexe muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on désigne par A, B, M_1 et M_2 les points d'affixes

respectives $e^{i\theta}$, $2e^{i\theta}$, $z_1 = \sqrt{2} \, e^{i\left(\theta + \frac{\pi}{4}\right)}$ et $z_2 = \sqrt{2} \, e^{i\left(\theta - \frac{\pi}{4}\right)}$.

- **a.** Montrer que le point A est le milieu du segment $[M_1M_2]$.
- **b.** Calculer $\frac{z_1}{z_2}$ et déduire que le quadrilatère OM_1BM_2 est un carré.

Exercice8:

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points A, B et C d'affixes respectives $z_A = 1 - i$, $z_B = 2 + \sqrt{3} + i$ et $z_C = 2$.

Soit Γ le cercle de centre C et de rayon 2.

- **1.a.** Vérifier que $B \in \Gamma$.
 - b. Placer les points A et C. Construire alors le point B.
- 2.a. Ecrire Z_A sous forme exponentielle.
 - **b.** Ecrire $\frac{z_B}{z_A}$ sous forme algébrique, en déduire que $\frac{z_B}{z_A} = \left(1 + \sqrt{3}\right)e^{i\frac{\pi}{3}}$.
 - c. En déduire la forme exponentielle de Z_B.
 - **d.** Déterminer alors la valeur exacte de $\sin \frac{\pi}{12}$
- 3. Déterminer l'ensemble des points M(z) du plan tels que $\left|z\right|=\left|\overline{z}-1-i\right|$.
- **4.** A tout point M d'affixe $z \ne 2$, on associe le point M' d'affixe z' telle que $z' = -3i\left(\frac{z-1+i}{z-2}\right)$.
 - a. Déterminer l'ensemble des points M(z) du plan tels que z'soit réel.
 - **b.** Montrer que pour tout point M distinct de C, $OM' = 3\frac{AM}{CM}$
- c. En déduire que lorsque M décrit la médiatrice de [AC], le point M'décrit un cercle que l'on déterminera.

Exercice9:

- 1. Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On considère les points A, B et C d'affixes respectives $z_A = 1 + i$, $z_B = 1 i$ et $z_C = 1 i\sqrt{3}$.
- a. Ecrire Z_A , Z_B et Z_C sous forme exponentielle.
- b. Montrer que OAB est un triangle rectangle et isocèle en O.
- c. Déterminer l'affixe du point D pour que OADB soit un carré.
- 2. A tout point M d'affixe z (z ≠ 1+i), on associe le point M'd'affixe z'telle que z' = $\frac{e^{i\frac{\pi}{3}}z-2}{z-1-i}$
 - a. Vérifier que $z' = e^{i\frac{\pi}{3}} \left(\frac{z 2e^{-i\frac{\pi}{3}}}{z 1 i} \right)$.
- **b.** En déduire l'ensemble des points M d'affixe z tels que |z'| = 1.

Exercice10:

1. Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On considère les points A, B et C d'affixes respectives $z_A = 2e^{i\frac{\pi}{3}}$, $z_B = 2\sqrt{2} e^{i\frac{\pi}{12}}$ et $z_C = 2e^{i\frac{5\pi}{6}}$

- a. Construire les points A et C.
- **b.** Vérifier que $\frac{z_C}{z_A} = i$, en déduire la nature du triangle OAC.
- c. Ecrire (1-i) sous forme exponentielle puis déduire que $(1-i)z_A = z_B$.
- d. Montrer que OBAC est un parallélogramme puis construire le point B.
- 2.a. Ecrire Z_B sous forme cartésienne.
 - **b.** En déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- 3. Construire le cercle Γ de centre O et de rayon $2\sqrt{2}$. La perpendiculaire à (OB) passant par O coupe le cercle (C) en un point D d'affixe z_D dont la partie imaginaire est positive.
- a. Justifier que $Z_D = iZ_B$.
- b. Montrer que OADC est un carré.

Exercice11:

Montrer que pour tout réel θ , $1 + e^{i\theta} = 2\cos\frac{\theta}{2} e^{i\frac{\theta}{2}}$ et que $1 - e^{i\theta} = -2i\sin\frac{\theta}{2} e^{i\frac{\theta}{2}}$.