Série N°2 : Exercice1 : Nombres complexes

Prof : Mersani Imed

Soit z un nombre complexe non nul de module  $\sqrt{2}$  et d'argument  $\theta$ .

Déterminer la forme exponentielle de chacun des nombres complexes :  $\frac{z}{z}$ ,  $\frac{z^2}{1+i}$  et  $\left(\frac{z}{\sqrt{3}+i}\right)^3$ 

# Exercice2:

Le plan complexe est muni d'un repère orthonormé direct (O,  $\vec{u}$ ,  $\vec{v}$ ).

On considère les points A, B et C d'affixes respectives  $z_A = \left(\sqrt{3} - i\right)e^{i\frac{\pi}{3}}$ ,  $z_B = -1 + i\sqrt{3}$  et  $z_C = i$ .

- **1.a.** Ecrire  $(\sqrt{3} i)$  sous forme exponentielle puis déduire la forme exponentielle de  $z_A$ .
  - **b.** Ecrire sous forme exponentielle les nombres complexes  $z_{_B}$  et  $\frac{z_{_A}}{z_{_B}}$  .
  - c. Déduire que le triangle OAB est isocèle rectangle en O.
- d. Déterminer l'affixe du point D pour que OADB soit un carré.
- 2. A tout point M du plan d'affixe  $z \ne i$ , on associe le point M' d'affixe  $z' = \frac{e^{-i\frac{\pi}{3}}z (\sqrt{3}-i)}{z-i}$ 
  - **a.** Vérifier que  $z' = e^{-i\frac{\pi}{3}} \left( \frac{z z_A}{z z_C} \right)$ .
  - **b.** En déduire l'ensemble des points M d'affixe z tels que |z'| = 1.

# Exercice3:

Dans le plan complexe muni d'un repère orthonormé  $(O, \vec{u}, \vec{v})$ , on considère les points M et d'affixes respectives  $z_M = e^{i\theta} + 1$  et  $z_N = e^{i\theta} - 1$ , où  $\theta$  est un réel de l'intervalle ]0,  $\pi$ [.

- **1.** Ecrire  $z_M$  et  $z_N$  sous forme exponentielle.
- **2.a.** Montrer que  $\frac{z_N}{z_M} = i tan \frac{\theta}{2}$ .
  - b. Déduire la nature du triangle OMN.
- 3. Déterminer l'ensemble E décrit par le point M lorsque  $\theta$  décrit l'intervalle ]0,  $\pi$ [.

### Exercice4:

Le plan complexe muni d'un repère orthonormé direct  $(O, \vec{u}, \vec{v})$ .

On désigne par A, B et C les points d'affixes respectives 2,  $1 - e^{i\frac{\pi}{3}}$  et  $1 + e^{i\frac{\pi}{3}}$ .

- **1.a.** Montrer que pour tout réel  $\theta$ ,  $1+e^{i\theta}=2cos\frac{\theta}{2}e^{i\frac{\theta}{2}}$  et  $1-e^{i\theta}=-2isin\frac{\theta}{2}e^{i\frac{\theta}{2}}$ .
  - **b.** Ecrire  $Z_B$  et  $Z_C$  sous forme exponentielle.
- 3. Calculer  $\frac{z_B}{z_C}$  , en déduire que  $\overrightarrow{OB} \perp \overrightarrow{OC}$  .
- 4. Montrer que le quadrilatère OBAC est un rectangle.

## Exercice5:

Le plan complexe est muni d'un repère orthonormé direct  $(O, \overrightarrow{u}, \overrightarrow{v})$ .

On considère les points A et B d'affixes respectives  $\, z_{_A} = \sqrt{3} + i \,$  et  $\, z_{_B} = -1 + i \sqrt{3} \,$  .

- **1.a.** Ecrire  $z_A$  et  $z_B$  sous forme exponentielle.
- **b.** Construire les points A et B dans le repère  $(O, \vec{u}, \vec{v})$ .
- c. Ecrire  $\frac{Z_B}{Z_\Delta}$  sous forme exponentielle.
- d. Déduire que le triangle OAB est rectangle et isocèle en O.
- e. Déterminer sous forme cartésienne l'affixe du point C pour que le quadrilatère OACB soit un carré.
- 2. Soit M le point d'affixe  $z_M = 1 + e^{2i\theta}$ , où  $\theta$  est un réel de  $[0, \frac{\pi}{2}[$ .
  - a. Montrer que  $z_M = 2\cos\theta e^{i\theta}$ .
  - **b.** Déterminer  $\theta$  pour que M varie sur le cercle  $\Gamma$  de centre O et de rayon 2.
  - c. Déterminer θ pour que les points O, A et M soient alignés.

### Exercice6:

Le plan est muni d'un repère orthonormé direct  $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ .

On considère les points A, B et C d'affixes respectives  $z_A = -1 + i\sqrt{3}$ ,  $z_B = -1 - i\sqrt{3}$  et  $z_C$  Devoir. T

- 1.a. Ecrire  $\mathbf{z}_{\mathrm{A}}$  et  $\mathbf{z}_{\mathrm{B}}$  sous forme exponentielle.
- **b.** Montrer que  $Z_{\Delta}^{2019} \in IR_{+}$ .
- **c.** Construire les points A, B et C dans le repère  $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ .
- $\textbf{2.a. V\'erifier que } \frac{Z_B-Z_C}{Z_A-Z_C}=e^{i\frac{\pi}{3}}\,.$ 
  - b. En déduire la nature du triangle ABC.
- 3. Soient les points D et E d'affixes respectives  $z_D = 1 + e^{i\frac{\pi}{3}}$  et  $z_E = 1 + z_D^2$ . On désigne par  $\Gamma$  le cercle de centre I et de rayon 1.
  - a. Justifier que  $D \in \Gamma$  et donner une mesure de l'angle  $(\overrightarrow{IC}, \overrightarrow{ID})$ .
- b. Construire alors le point D.
- **4.a.** Déterminer la forme exponentielle des nombres complexes  $z_D z_I$  et  $z_E z_I$ .
  - b. En déduire que les points I, D et E sont alignés puis construire le point E.

#### Exercice7:

Le plan complexe est muni d'un repère orthonormé direct  $(O, \overrightarrow{u}, \overrightarrow{v})$ .

On considère les points A, B et C d'affixe respectives  $z_A = 1 + i\sqrt{3}$ ,  $z_B = 2ie^{i\frac{\pi}{3}}$  et  $z_C = 2(1+i)e^{i\frac{\pi}{3}}$ .

- **1.a.** Ecrire  $z_A$  et  $z_B$  sous forme exponentielle.
  - **b.** Construire les points A et B dans le repère  $(O, \vec{u}, \vec{v})$ .
  - c. Montrer que le triangle OAB est isocèle rectangle en O.
- **d.** Montrer que  $Z_C = Z_A + Z_B$ .
- e. Déduire que OACB est un losange.
- 3. Soit le point M d'affixe  $z_M = e^{2i\theta} + 1$ , où  $\theta$  est un réel de l'intervalle  $[0, \pi]$ .
- a. Vérifier que  $Z_M = Z_A + Z_B$ .
- **b.** Déterminer la valeur de  $\theta$  pour que les points O, A et M soient alignés.

# Exercice8:

Le plan complexe P est rapporté à un repère orthonormé direct  $(O, \vec{u}, \vec{v})$ 

Soit le nombre complexe  $j = e^{i\frac{2\pi}{3}}$ .

- **1.** Montrer que  $j^2 = \bar{j}$  et que  $\frac{1}{i} = \bar{j}$
- 2. Calculer  $1+j+j^2$ .
- 3. Soient A, B et C les points d'affixes respectives 2, 2j et  $2j^2$ .
- a. Placer les points A, B et C dans le repère (O, v, v).
- b. Montrer que le triangle ABC est équilatéral.
- **4.** Soient I et J les points d'affixes respectives -2i et 1 et f l'application de  $P\setminus\{J\}$  dans P qui à tout point M d'affixe  $z \neq 1$ , associe le point M'd'affixe z' telle que  $z' = \frac{2-iz}{1-z}$ .
- **a.** Vérifier que pour tout  $z \in \mathbb{C} \setminus \{1\}$ ,  $z' = \frac{i(z+2i)}{z-1}$
- b. Déterminer et représenter l'ensemble des points M d'affixe z tels que z'est réel.
- **c.** Déterminer l'ensemble des points M d'affixe z tels que |z'| = 1.

#### Evercice9

Le plan est muni d'un repère orthonormé direct  $(O, \vec{u}, \vec{v})$ .

On désigne par (C) le cercle de centre O et de rayon 1 et par I et A les points d'affixes respectives 1 et  $a = \sqrt{3} + i$ .

- 1.a. Donner la forme exponentielle de a.
- b. Construire le point A.
- 2. Soit B le point d'affixe  $b = \frac{a-1}{1-a}$ .
  - a. Vérifier que  $b\bar{b} = 1$ . En déduire que le point B appartient au cercle (C).
  - **b.** Montrer que  $\frac{b-1}{a-1}$  est réel. En déduire que les points A, B et I sont alignés.
  - **c.** Construire le point B dans le repère  $(O, \overrightarrow{u}, \overrightarrow{v})$ .
- 3. Soit  $\theta$  un argument du nombre complexe b.

Montrer que 
$$\cos \theta = \frac{2\sqrt{3} - 3}{5 - 2\sqrt{3}}$$
 et  $\sin \theta = \frac{2 - 2\sqrt{3}}{5 - 2\sqrt{3}}$ 

