

Révisions Bac

L'essentiel: Dosage

2012 - 2013

ApH pH_F \mathbf{pH}_{acide}

Acide Fort par une Base Forte

Observations:

- Faible variation de pH avant et après l'équivalence.
- Saut brusque de pH au voisinage du point d'équivalence.
- La courbe admet un point d'inflexion, c'est le point d'équivalence E.
- $pH_E = 7$ la solution est neutre à l'équivalence.

Au point d'llowequivalence E :

La réaction est totale et la quantité d'ions $\mathbf{H_3O}^+$ provenant de l'acide est égale à la quantité d'ions OH provenant de la base versée à l'équivalence, on alors disparition totale de ces ions.

V_b(mL) Remarque: Il n'y a pas de point de demi-équivalence.

Equation de la **r**éaction :

$$H_3O^+ + OH^- \longrightarrow 2H_2O$$

Cette réaction est *totale* car : $K = \frac{1}{[H_3O^+][OH^-]} = 10^{14} \,\grave{a} \, 25^{\circ}C$ Donc $K \gg 1$

Tableau descriptif d'Évolution :

Condition d'équivalence : C_a . $V_a = C_b$. V_{bE}

équation de la réaction		H ₃ O⁺ -	+ OH⁻ →	2 H ₂ O
état du système	Avanc ^{ent} volum	$n(H_3O^*)$	n(OH¯)	n(H ₂ O)
état initial	y=0	<u>CaVa</u> Va+Vb	$\frac{C_b V_{bE}}{V_a + V_b}$	Excès
état final	y_f	$\frac{CaVa}{Va+Vb} - y_f = 0$	$\frac{C_b V_{bE}}{V_a + V_b} - y_f = 0$	Excès

