Resumée de cours physique

I- Le condensateur :

Le condensateur est un composant électrique qui peut stocker de l'énergie lorsqu'il est chargé.

Son symbole est le suivant :

La charge d'un condensateur est par convention la charge prise par l'armature vers laquelle est orienté le sens de courant électrique.

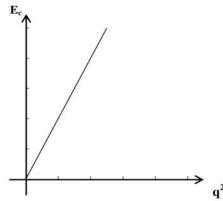
En courant contenu q est donnée pat la relation q = I. t.

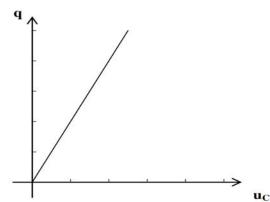
Si le courant est variable i = $\frac{dq}{dt}$.

Pour un condensateur plan l'expression de sa capacité est donnée par la relation suivante :

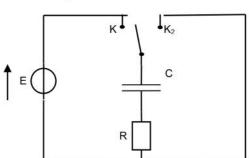
$$C = \varepsilon \frac{S}{e} = \varepsilon_{\rm r} . \varepsilon_{\rm o} \frac{S}{e} .$$

La tension au bornes du condensateur est u $_{\rm C} = \frac{q}{\rm C}$ son énergie est $E_{\rm C} = \frac{1}{2}$ C u $_{\rm C}$ $^2 = \frac{1}{2}$ $\frac{q^2}{\rm C}$.





II- Le dipôle RC:



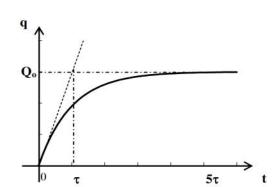
1- Réponse du dipôle RC à un échelon de tension :

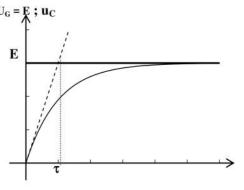
Le condensateur se charge progressivement lorsqu'on applique à ces bornes un échelon de tension E.

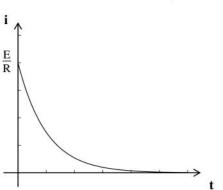
L'équation différentielle en q (ou en u $_{\mbox{\scriptsize C}}$) est la suivante :

$$\frac{dq}{dt} + \frac{q}{RC} = \frac{E}{R}$$
. $\left(\frac{du_C}{dt} + \frac{1}{RC} u_C = \frac{E}{RC}\right)$

$$\label{eq:lagrangian} \begin{split} La \mbox{ solution est de la forme} : q(t) &= Q_o[1 - \exp(-\ \frac{t}{\tau}\)] \quad (\ u_C(t) = E\ [1 - \exp(-\ \frac{t}{\tau}\)] \quad avec \ \tau = RC \\ et \ Q_o &= C.E \end{split}$$







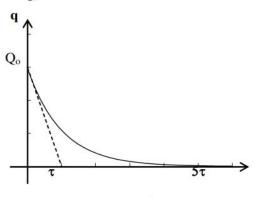
2- Décharge d'un condensateur à travers un conducteur ohmique :

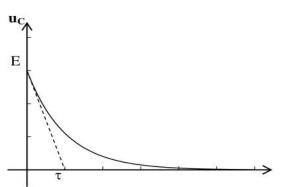
Le condensateur se décharge progressivement lorsqu'on déplace le commutateur en position (2).

L'équation différentielle en q (ou en u c) est la suivante :

$$\frac{dq}{dt} + \frac{q}{RC} = 0 \qquad (\frac{du_C}{dt} + \frac{1}{RC} u_C = 0)$$

La solution est de la forme : $q(t) = Q_0 \exp(-\frac{t}{\tau}) (u_C(t) = E \exp(-\frac{t}{\tau}))$ avec $\tau = RC$ et $Q_0 = C.E$







Le condensateur est complètement chargé ou déchargé après une durée de temps $\Delta t = 4,6\tau \approx 5\tau.$

II- Le dipôle RL:

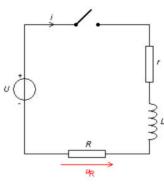
1- Réponse d'un dipôle RL à un échelon de tension :

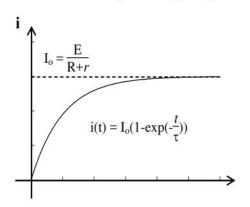
Il s'établit progressivement un courant électrique contenu I_o dans le circuit suite à l'application d'un échelon de tension aux bornes du dipôle RL.

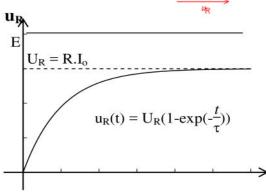
Equation différentielle en i :

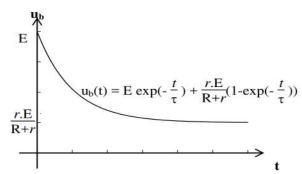
$$\frac{di}{dt} + \frac{1}{\tau}$$
 i = $\frac{E}{L}$ avec $\tau = \frac{L}{r + R}$

La constante de temps τ est une grandeur qui renseigne sur le retard avec lequel le régime permanent s'établit.





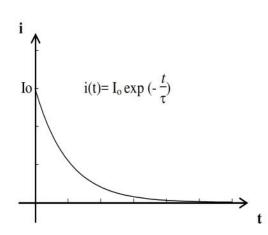


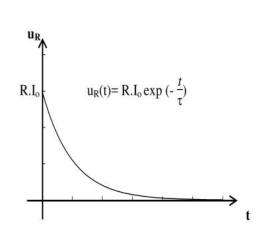


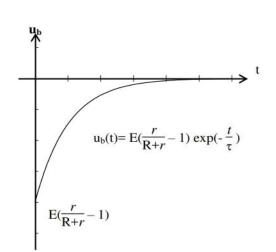
2- Rupture d'un courant dans un circuit RL :

Equation différentielle en i :

$$\frac{di}{dt} + \frac{1}{\tau} \cdot i = 0 \qquad \text{avec } \tau = \frac{L}{r + R}$$







En régime permanent la bobine se comporte comme un conducteur ohmique.

L'énergie magnétique restituée dans la bobine lorsqu'elle est parcourue par un courant i est :

$$E_L = \frac{1}{2} L.i^2$$
.

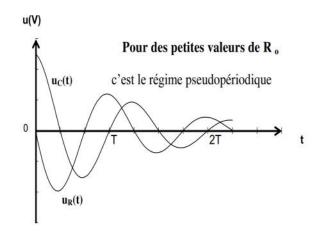
IV- Le dipôle RLC:

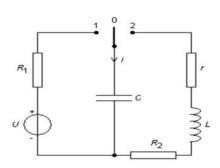
On charge un condensateur et on le connecte en série avec un conducteur ohmique de résistance R_2 et une bobine d'inductance L et de résistance interne r.

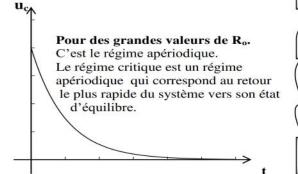
Equation différentielle :

$$L\frac{d^2q}{dt^2} + R_0 \frac{dq}{dt} + \frac{q}{C} = 0 \quad \text{avec } R_0 = R_2 + r$$

$$LC \frac{d^2 u_C}{dt^2} + R_o C \frac{du_C}{dt} + u_C = 0$$

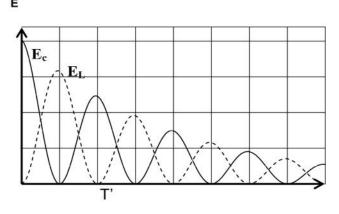






L'énergie totale du circuit diminue au cours du temps à cause de la résistance totale du circuit qui dissipe l'énergie sous forme de chaleur par effet joule.

$$E = E_L + E_c = \frac{1}{2}L.i^2 + \frac{1}{2}\frac{q^2}{C}$$
 donc $\frac{dE}{dt} = i(L\frac{di}{dt} + \frac{q}{c}) = -R_o.i^2 < 0$



Cas particulier $R_o = 0\Omega$.

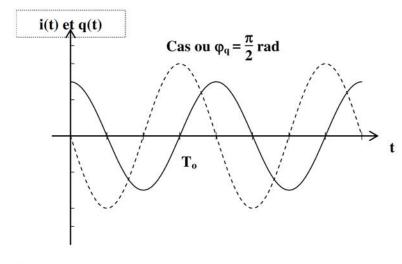
Les oscillations dans ce cas sont libres non amorties dont l'équation différentielle est de la forme :

$$L\frac{d^2q}{dt^2} + \frac{q}{C} = 0$$
 c.a.d $\frac{d^2q}{dt^2} + w_0^2 q = 0$ avec $w_0 = \frac{1}{\sqrt{LC}}$ la pulsation propre des oscillations.

La période propre est $T_o = 2\pi \sqrt{LC}$ et la fréquence propre est $N_o = \frac{1}{2\pi \sqrt{LC}}$

$$q\left(t\right) = Q_{m} \sin(w_{0}.t + \phi_{q}) \ \text{avec } Q_{m} = C.U_{cm}$$

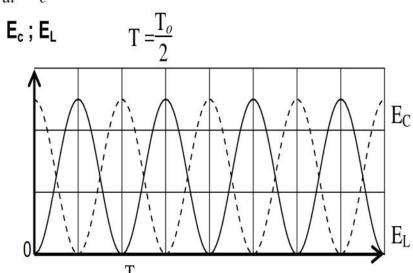
$$i \ (t) = I_m \, sin(w_0.t + \phi_i) \quad avec \ I_m = w_0. \ Q_m \quad et \ \phi_i = \phi_q + \frac{\pi}{2}$$



L'énergie totale du circuit reste constante au cours du temps donc le système est conservatif.

$$E = E_L + E_c = \frac{1}{2}L.i^2 + \frac{1}{2}\frac{q^2}{C} = \frac{1}{2}LI_m^2 = \frac{1}{2}\frac{Q_m^2}{C}$$

$$\frac{dE}{dt} = i(L\frac{d^2q}{dt^2} + \frac{q}{c}) = 0$$

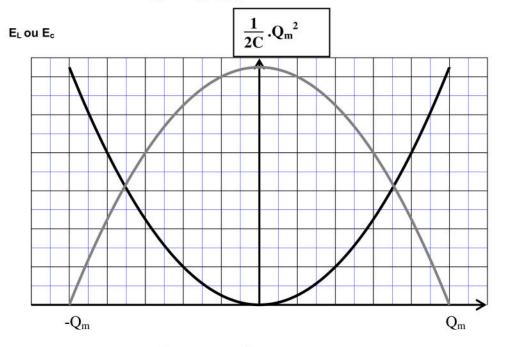


$$\frac{dE}{dt} = \frac{dE_C}{dt} + \frac{dE_L}{dt} = 0$$
 donc $\frac{dE_C}{dt} = -\frac{dE_L}{dt}$

Les oscillations libres non amorties sont dues à une transformation mutuelle et intégralle d'énergie électrique et énergie magnétique.

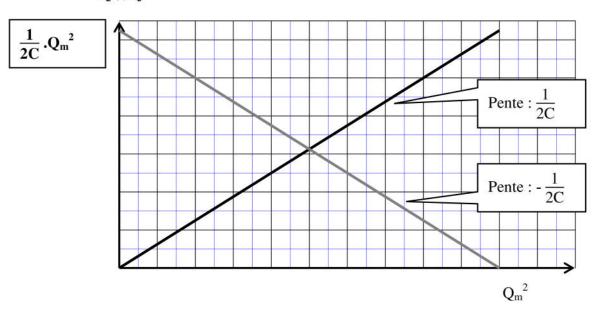
Ec=
$$\frac{1q^2}{2C}$$
 et $E_L = \frac{1}{2C} \cdot Q_m^2 - \frac{1}{2C}q^2$

Courbe de variation de Ec = f(q) et $E_L = g(q)$



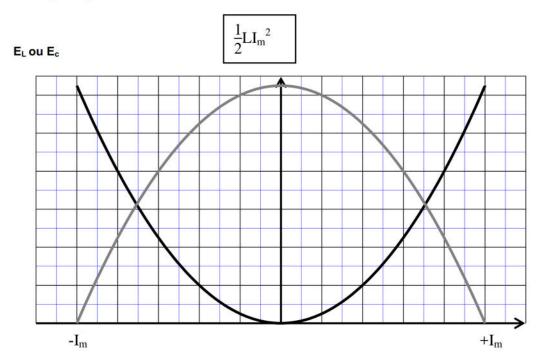
Courbe de variation de $Ec = f(q^2)$ et $E_L = g(q^2)$

E_L ouE_c



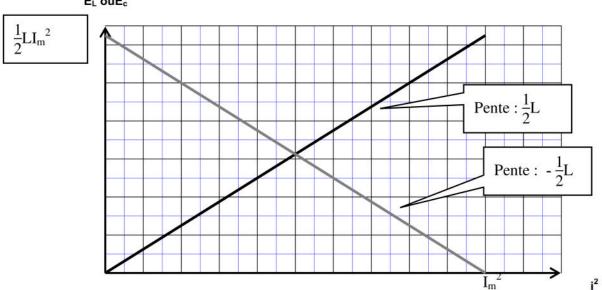
$$E_L = \frac{1}{2} L.i^2$$
 et $E_C = \frac{1}{2} L I_m^2 - \frac{1}{2} L i^2$

Variation de E_L et E_c en fonction de i



Variation de E_L et E_c en fonction de $i^2\,$

E_L ouE_c



 $i^2 = w_0^2 (Q_m^2 - q^2)$ Variation de $i^2 = f(q)$

