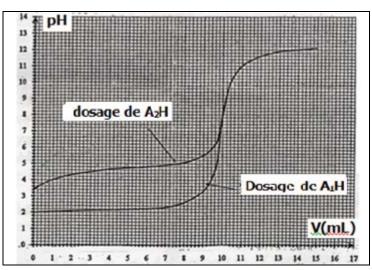
Lycée Hamouda
Becha
Bech


Chimie: (9pts)
Exercice n: 1 (4,5pts)

On dispose de deux solutions (S_1) d'un acide A_1H et d'une solution (S_2) d'un acide A_2H de même concentration C. On prélève un volume V_1 de (S_1) et volume V_2 de (S_2) et on effectue le dosage de chaque solution prise séparément avec la soude (NaOH) de concentration $C' = 10^{-2}$ mol.L⁻¹.

-1- -a- A partir des courbes : $pH = f(V_B)$, préciser si A_1H et A_2H sont des acides forts ou des acides faibles. Justifier la réponse.

-b- Calculer C.

-2- On considère le cas du dosage de S₂ et on donne **pka** de A₂H **pka**₂=4.8.

- -a- Ecrire l'équation de la réaction du dosage. Et montrer qu'elle est totale.
- -b- Donner la nature de la solution obtenue à l'équivalence.
- -c- Montrer qu'au point de demi équivalence, on a : $[A_2H]=[A_2^-]$ et déduire que $pH_{1/2}=pKa$.
- -d- Donner la nature et les caractéristiques de la solution obtenue au point de demi équivalence et donner ces caractéristiques.

Exercice n: 2 (4,5pts)

Toutes les mesures sont réalisées à 25° C, température pour laquelle $pK_e = 14$. On considère deux solutions basiques S_1 et S_2 de même concentration molaire C.

- S₁ est une solution aqueuse d'une base B₂.
- S₂ est une solution aqueuse d'une base B₂. L'une des deux bases est forte.

On dose séparément un même volume V_B de chacune des solutions S_1 et S_2 par une solution d'acide nitrique HNO_3 (acide fort) de concentration molaire C_A et de pH=1,3. On note V_A le volume de l'acide ajouté.

Le résultat du dosage des deux solutions basiques ${\bf S_1}$ et ${\bf S_2}$ sont consignés dans le tableau suivant :

V _A (mL)		0	10	20
	Solution S ₁	9,20	5,40	3,44
рН	Solution S ₂	13,00	12,40	7,00

- -1- Calculer la concentration molaire C_A de la solution d'acide nitrique.
- -2- -a- Comparer les forces des deux bases B₁ et B₂. Identifier la base forte.
- -b- Déduire la concentration molaire C_B des deux solutions basiques.
- **-3-** -a- Préciser, en le justifiant, le volume \mathbf{V}_{AE} de la solution d'acide ajouté à l'équivalence.
 - -b- En déduire le volume initial **V**_B de chacune des solutions **S**₁ et **S**₂.
 - -c- Déterminer le **pK**_a du couple associé à la base faible.
 - -4- -a- Écrire l'équation-bilan de la réaction entre la base faible et l'acide nitrique.
 - -b- Montrer que cette réaction est totale.

- -5- Suite à l'ajout d'un même volume V_A d'acide après l'équivalence, à chacune des solutions basiques S_1 et S_2 , la valeur du pH du mélange reste la même pour les deux dosages.
 - -a- Justifier ce résultat.
- -b- Sachant que cette valeur du **pH** est égale à (**2—log 2**), déterminer le volume V_A d'acide versé après l'équivalence.

Physique: (11 pts)

Exercice n: 1 (5,5 pts)

Une lame vibrante communique à l'extrémité **S** d'une corde élastique tendue horizontalement, un mouvement vibratoire sinusoïdal d'équation:

 $y_s(t) = a.\sin(2\pi Nt + \varphi)$ avec N=50Hz et a=2.10⁻³m.

L'autre extrémité de la corde **B** est munie d'un dispositif d'absorption empêchant toute réflexion.

A la date t=0s la source **S** commence son mouvement.

- -1- -a- Préciser avec justification si l'onde est transversale ou longitudinale?
- -b- Qu'observe-t-on si on éclaire la corde par une lumière stroboscopique de fréquence $N_e = \frac{N}{2}$.
- **-2-** L'aspect de la corde à une date $\mathbf{t_1}$ est donné par la <u>figure-1-</u> ci-dessous: Déduire de la figure les valeurs de.
 - -a- la longueur d'onde λ .
 - -b- l'instant t₁.
 - -c- montrer que La célérité de propagation v est 5 m.s⁻¹.

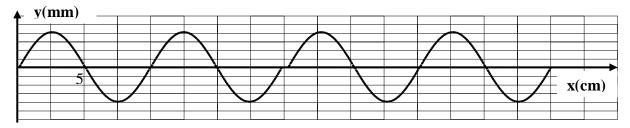
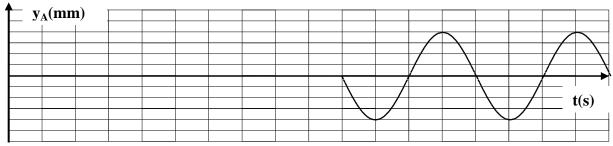
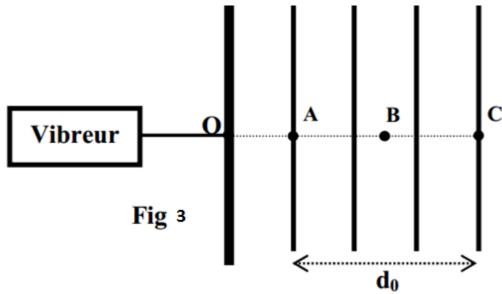



Figure-1-


-3- La variation en fonction du temps de l'élongation d'un point $\bf A$ de la corde situé à la distance $\bf x_A$ de la source $\bf S$ est donnée par la <u>figure-2-</u> ci dessous :

- -a- Déduire la position $\mathbf{x}_{\mathbf{A}}$ du point \mathbf{A} .
- -b- Représenter sur la figure-2- avec justification les vibrations de ${\bf S}$ au cours du temps. Comparer les vibrations de ${\bf S}$ et ${\bf A}$.
- -c- Ecrire l'équation horaire du mouvement du point **A**, déduire celle de la source **S**.
- -d- Déterminer le premier instant t_A pour le quel le point A à une élongation " $\frac{a}{2}$ " se déplaçant dans le sens positif.

Exercice n: 2 (5,5 pts)

Une lame vibrante \mathbf{L} , de fréquence \mathbf{N} réglable, excite la surface libre de l'eau d'une cuve à ondes. Cette excitation donne naissance à une onde mécanique progressive rectiligne qui se propage à la surface de l'eau avec une célérité \mathbf{v} . Pour assurer l'immobilité apparente de la surface de l'eau dans la cuve à ondes, on utilise un stroboscope de fréquence $\mathbf{N_e}$ réglable. A un instant $\mathbf{t_1}$ donné, et pour une fréquence $\mathbf{N_1}$ de la lame \mathbf{L} , l'immobilité apparente de la surface de l'eau est obtenue pour une fréquence $\mathbf{maximale} \ \mathbf{N_e}$ du stroboscope égale à $\mathbf{20} \ \mathbf{Hz}$. La surface de l'eau à l'instant $\mathbf{t_1}$ est schématisée, sans échelle, sur la **figure-3**.

Les lignes de la **figure-3** représentent les lieux des points d'élongation maximale de la surface de l'eau. Les points **A**, **B** et **C** de la **figure-3** sont des points particuliers du milieu de propagation et situés sur le même prolongement.

- -1- Justifier que la valeur de N₁ est 20Hz.
- -2- -a- Déterminer la valeur de la longueur d'onde λ de l'onde qui se propage, sachant que la distance entre A et C est $d_0 = 3,6$ cm.
 - -b- En déduire la valeur de la célérité **v** de l'onde qui se propage.
- -c- Montrer que la distance d_1 parcourue par l'onde à l'instant t_1 est : $d_1 = 4,25\lambda$. En déduire la valeur de t_1 .
- -3- Préciser l'état de vibration de chacun des points ${\bf B}$ et ${\bf C}$ par rapport au point ${\bf A}$, en se basant sur la valeur de la longueur d'onde ${\bf A}$.
- -4- -a-Ecrire l'équation horaire d'un point M situé, au repos, à une distance d du point A, sachant que l'équation horaire de A est: $y_{A(t)} = 2.10^{-3}.sin(40\pi t)$, en m, pour $t \ge 0$.
- -b- Donner l'équation horaire de M pour d = 2,7cm et son état de vibration par rapport au point A.
- -5- Déterminer la valeur qu'on doit donner a la fréquence **N** de la lame vibrante pour que **B** soit le premier point qui vibre en phase avec **A**.