<u>PROF : TRAYIA NABIL</u>

CHIMIE:

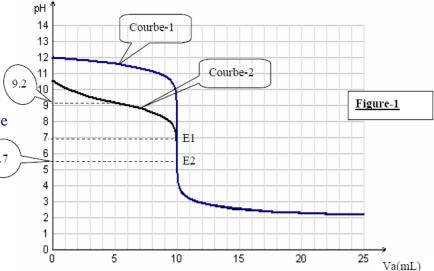
Exercice n°1:

On trace sur la **figure -1** les courbes représentant pH=f(Va), obtenues en mesurant le pH au cours de l'addition d'un volume Va d'une solution aqueuse d'acide chlorhydrique (acide fort) de concentration molaire C_A ($Ke=10^{-14}$ à $25^{\circ}C$)

- ♣ A un volume V_{b1} =20 mL d'une solution aqueuse S_1 d'une base forte notée B_1
- ♣ A un volume V_{b2} =20 mL d'une solution aqueuse S_2 d'une base faible notée B_2 Les deux solutions basiques ont la même concentration molaire $Cb=10^{-2}$ mol.L⁻¹

2. Déterminer graphiquement les valeurs

a- pH_{i1} et pH_{i2} du pH initial respectivement de S_1 et S_2


b- Les valeurs pH_{E1} et pH_{E2} du pH à l'équivalence

c- Le **pH** à la demi équivalence pour le dosage de la base faible

3. Déterminer la valeur du **pKa** du couple **acide/base** associé à la base faible. Justifier.

4. Ecrire l'équation bilan de la réaction du dosage pour chaque base

5. Définir l'équivalence acido-basique, en déduire **C**_A.

- 6. Au lieu de suivre le dosage à l'aide d'un pH mètre on utilise un indicateur coloré
- a- Définir un indicateur coloré
- **b-** On dispose des quatre indicateurs colorés suivants dont les zones de virage sont consignées dans le tableau ci-dessous

Indicateur coloré	Rouge de méthyle	Phénophtaléine	Bleu de bromothymol	Hélianthine
Zone de virage	4.2 6.5	8.2 10	6 7.6	3.14.4

Préciser lequel est le mieux approprié pour chacun de ces dosages

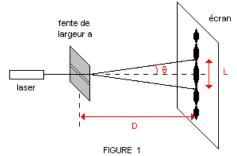
Exercice n°2:

La masse molaire d'un amide (A) est égale à M=73gmol⁻¹.

- 1) Définir un amide et donner son groupement fonctionnel.
- 2) Déterminer la formule brute de A.
- 3) L'hydrolyse en milieu basique d'un amide disubstitué (A_1) isomère de A est réalisée en chauffant à reflux l'amide (A_1) en présence d'une solution d'hydroxyde de sodium. On obtient deux composés organiques: un carboxylate de sodium \mathbf{B} et une amine secondaire \mathbf{C} .
- Ecrire l'équation de la réaction modélisant cette transformation.
- 4) On peut obtenir l'amide (A₂) de formule brute **R-CONHR**₁ isomère de (A), en utilisant un composé (D) de formule semi développée R-CO-Cl et une amine primaire (F).
- a) Identifier l'amide (A₂)
- b) Donner la fonction chimique de (D).
- c) Ecrire, en formule semi-développée, l'équation chimique de la réaction.

PHYSIQUE:

Exercice n°1 :


On dispose d'un laser hélium-néon de longueur

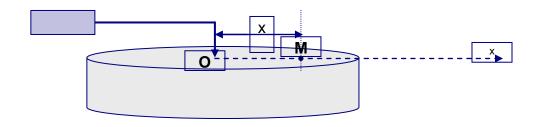
d'onde $\lambda = 633$ nm. On interpose une

Fente fine horizontale entre le laser et un écran **E** Comme l'indique la figure ci-contre.

1°)

- a) Nommer le phénomène observé.
- **b**) Quel caractère de la lumière ce phénomène est mis en évidence ?

 2°) En s'aidant d'un schéma, exprimer le demi-angle θ en fonction de D et de la largeur L de la tâche centrale.


- 3°) a) Sachant que $\theta = \lambda/a$, montrer que la largeur L de la tâche centrale est donnée par la relation : $\mathbf{L} = \frac{2\lambda D}{a}$.
- **b**) sachant que : L=38mm et D=3m. Calculer a.

Exercice $n^{\circ}2$:

La pointe d'un vibreur affleure en O la surface d'une nappe d'eau de profondeur constante, les vibrations de la pointe sont sinusoïdales et verticales, de fréquence N=50Hz et d'amplitude a=5.10-3m(voir figure)

- 1) La distance séparant la 3^{ième} et 8 ième ride crête est d=4cm.
- a) Définir la longueur d'onde.
- b) Déterminer la longueur d'onde λ et la célérité v.
- 2) Donner l'équation horaire du mouvement de la source si la pointe du vibreur démarre à t_0 à partir de $y_0(t_0)=0$ dans le sens positif des élongations et en considérant t=0 au premier passage par l'élongation maximale.
- 3) a) Etablir l'équation du mouvement d'un point M de la surface situé au repos à la distance x=2,6cm de la source.
 - b) Représenter sur le meme système d'axes les diagrammes des mouvements de O et M.
 - c) Déterminer la vitesse du point M à t=0,0675s.
- 4) On éclaire la surface d'eau avec un stroboscope.

Qu'observe t-on si la fréquence des éclairs est réglée à Ne=25Hz et Ne=25,1Hz.

