Lycée TEBOULBA Prof: BEN KAHLA JAWHER

Devoir de contrôle n° 1 Sciences physiques

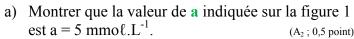
Classe: 4^{ème} Sc exp 3 9 Novembre 2019 Durée: 2 heures

Figure 1

t (min)

Chimie (9 points)

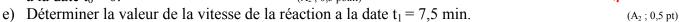
Exercice n°1: (6,5 points)


On se propose d'étudier, la cinétique de l'oxydation des ions iodures I^- par les ions peroxodisulfate $S_2O_8^{2-}$ d'équation bilan : $S_2O_8^{2-} + 2I^- \longrightarrow I_2 + 2SO_4^{2-}$

A la température ambiante, on mélange dans un bécher (instant choisi $t_0 = 0$):

- Un volume $V_1 = 20 \text{ mL}$ d'une solution aqueuse d'iodure de potassium KI de concentration molaire $C_1 = 0.1 \text{ mol}.L^{-1}$;
- Un volume $V_2 = 80$ mL d'une solution aqueuse de peroxodisulfate de potassium $K_2S_2O_8$ concentration molaire $C_2 = 9.375 \text{ mmo} \ell \cdot \text{L}^{-1}$;

Au cours de la réaction le volume V de milieu réactionnel reste constant.


- 1) a) Déterminer les quantités de matières initiales n_{01} et n_{02} respectivement de I- et de $S_2O_8^{2-}$. (A₁; 0,25 pt)
 - b) Dresser le tableau d'avancement descriptif d'évolution de système.
 - c) Déduire le réactif limitant sachant que la réaction est totale. (A2; 0,5 point)
- 2) Une étude expérimentale appropriée a permis de représenter la courbe de la figure 1 décrivant l'évolution de la molarité en ions I au cours de temps.

- b) Préciser, en le justifiant, si la réaction est terminée ou non après une demi heure? (C; 0,5 point)
- c) Montrer que la vitesse volumique de la réaction à une date t, s'exprime par la relation:

$$v_V(t) = -\frac{1}{2} \left(\frac{d[I^-]}{dt} \right)_t$$
. (A₂; 0,5 point)
Déterminer la valeur de la vitesse de la réaction

a la date $t_0 = 0$.

- En exploitant vos calculs précédents déduire comment évolue la vitesse de la réaction au cours de temps. Préciser le facteur cinétique responsable; le Interpréter microscopiquement cette évolution. (A; 0,5 pt)
- g) Déterminer la composition molaire de système a la date $t_2 = 12,5$ min. $(A_2; 0,5 pt)$
- h) Déterminer le temps $t_{\underline{1}}$ de demi-réaction. (A2; 0,5 point)
- 3) On refait l'expérience (a la température ambiante), en ajoutant dès le départ quelques gouttes d'une solution de sulfate de fer (II); On constate que la couleur jaune brune s'intensifie plus rapidement que lors de la première expérience. Préciser en justifiant le type de la catalyse; Représenter (sur la figure de la page a rendre), en justifiant, la nouvelle allure de la courbe $[I^-] = g(t)$ décrivant l'évolution de la molarité en ions I au cours de temps. (C; 0,75 point)

On se propose d'étudier l'influence des facteurs cinétiques sur la réaction d'équation suivante:

$$Cr_2O_7^{2-} + 3C_2H_2O_4 + 8H_3O^+ \longrightarrow 2Cr^{3+} + 6CO_2 + 15H_2O$$

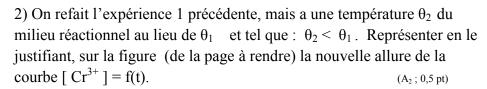
Expérience 1 : A la température ambiante θ_1 , on mélange dans un bécher (instant choisi $t_0 = 0$) :

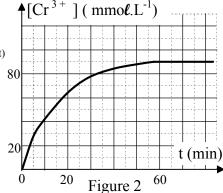
- Un volume $V_1 = 50$ mL d'une solution de bichromate de potassium $K_2Cr_2O_7$ de concentration molaire $C_1 = 90 \text{ mmo} \ell.L^{-1}$;
- Un volume $V_2 = 50$ mL d'une solution d'acide oxalique $C_2H_2O_4$ de concentration molaire $C_2 = 300 \text{ mmo} \ell.L^{-1}$;
- Quelques gouttes d'une solution d'acide sulfurique concentré (en excès).

Au cours de la réaction le volume V de milieu réactionnel reste pratiquement constant et on prendra $V \approx V_1 + V_2$. Une étude expérimentale appropriée a permis de suivre l'évolution de la molarité [Cr³⁺]

Prof: BEN KAHLA JAWHER Lycée Teboulba

4^{ème} Sc exp

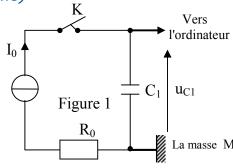

Devoir de contrôle n°1

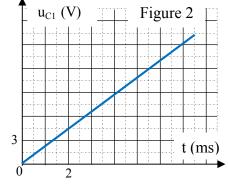

sciences physiques

des ions chrome Cr³⁺ formé au cours de temps, voir figure 2.

- 1)a) Préciser en justifiant, si les ions hydronium H₃O ⁺ apportés par l'acide sulfurique jouent-ils le rôle d'un catalyseur ou d'un réactif.(A₁; 0,25 pt)
 - b) Déterminer la valeur de l'avancement volumique final y_f. (A₂; 0,5 pt)

- 3) On refait l'expérience 1, a la température θ_1 , mais en ajoutant dès le départ un volume $V_3 = 200$ mL d'eau distillée. Représenter, en justifiant, sur la figure (de la page à rendre) la nouvelle allure de la courbe $[Cr^{3+}] = g(t)$, tout en précisant le facteur cinétique mis en jeu. (A2; 0,5 point)
- 4) On refait l'expérience 1, a la température θ_1 , mais en ajoutant dès le départ une quantité de 1mmol de cristaux de bichromate de potassium $K_2Cr_2O_7$. On suppose que la dissolution des cristaux n'a pas entraînée un changement du volume. Représenter, en justifiant, sur la figure (de la page à rendre) la nouvelle allure de la courbe $[Cr^{3+}] = h(t)$, tout en précisant le facteur cinétique mis en jeu. (C; 0,75 pt)


Physique (11 points)


Exercice n°1: N.B: Les parties I et II sont indépendantes (8 points)

I- Un condensateur de capacité C_1 est monté dans le montage de la figure 1. On donne : $I_0 = 4$ mA.

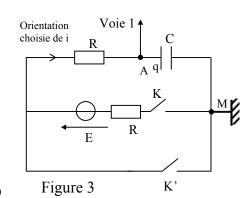
L'interrupteur K est fermé à une date choisie origine de temps.

On obtient la courbe $u_{C1} = f(t)$ de la figure 2.

- 1)a) Préciser de quoi dépend la capacité d'un condensateur?(A1; 0,25 pt)
 - b) En exploitant la courbe, déduire si le condensateur est chargé ou déchargé au départ. (B; 0,25 pt)
- 2) Montrer que la tension aux bornes de condensateur C₁

à un instant t s'exprime par :
$$u_{C1} = \frac{I_0}{C_1}$$
 t. (A₂; 0,5 pt)

- 3) En exploitant la courbe de la figure 2, déduire la valeur de la capacité C_1 . (A₂; 0,5 pt)
- 4) Sachant que la tension de claquage de ce condensateur vaut $U_{\text{claq}} = 150 \text{ V}$, déterminer la date t' a partir de laquelle risque-t-on de claquer le condensateur. (C; 0,5 pt)
- II-A) Un condensateur déchargé de capacité C, est branché a deux conducteurs ohmiques chacun de résistance $R=2,5~k\Omega$ et deux interrupteurs K et K' comme l'indique la figure 3.


On utilise un dispositif informatisé d'acquisition de

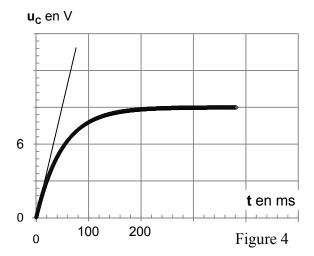
données qui permet de visualiser sur la voie 1 la tension $u_C(t)$ aux bornes du condensateur en fonction du temps.

On ferme K, a $t_0 = 0$ (en maintenant K' ouvert). Le dipôle (R,C) Est alors soumis à un échelon de tension de valeur E.

1) Montrer que l'équation différentielle en u_C (t) est sous la forme :

$$\tau \frac{du_C(t)}{dt} + u_C(t) = E$$
 en précisant l'expression de τ . (A₂; 0,5 pt)

Lycée Teboulba Prof : Ben Kahla Jawher 4


4^{ème} Sc exp

Devoir de contrôle n°1

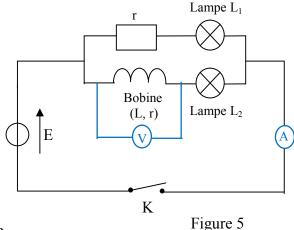
sciences physiques

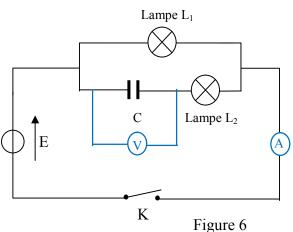
2 t n **(**

- 2) La solution d'une telle équation différentielle est de type $u_C(t) = A e^{-\frac{t}{\alpha}} + B$, avec α , A et B, sont des constantes réelles. Déterminer l'expression de $u_C(t)$ en fonction de E, R et C. (A₂; 0,5 pt)
- 3) Sur la voie 1, on obtient la courbe de la figure 4.
 - a) Déterminer graphiquement, la constante de temps τ en expliquant la méthode utilisée; Déduire la valeur de la capacité C. (A₂; 0,75 pt)
 - b) Déterminer la valeur de la f.é.m. E. (A₂; 0,25 pt)
- c) Déduire a partir de l'expression de $u_C(t)$, a quelle date t_1 a-t- on $u_C(t_1) = u_R(t_1)$. (B; 0,5 pt)
- 4) a) Calculer la valeur de l'énergie électrostatique E_{c2} emmagasinée dans le condensateur a la date $t_2 = 100$ ms. (A₂; 0,5 pt)
- b) Calculer la valeur de l'intensité de courant à la date $t_2 = 100$ ms. (A₂; 0,5 pt)
- **B)** Une fois la première expérience réalisée, on ouvre K puis immédiatement on ferme K'. (cet instant sera pris comme nouvelle origine de temps $t_0' = 0$.)

- 1)a) Donner la nouvelle équation différentielle en $u_C(t)$. (A₁; 0,25 pt) $u_C(t)$.
 - b) En vérifiant que
- $u_C(t) = E e^{-\frac{t}{\tau'}}$ est une solution de cette équation différentielle, déduire l'expression de τ' . (A₂; 0,5 pt) 2)a) Préciser en justifiant, si la décharge de condensateur sera-t-elle plus rapide ou plus lente que sa charge. (A₂; 0,5 pt)
- b) Calculer la durée θ ' (a partir de t_0 ') pratiquement nécessaire pour décharger ce condensateur. (A₂ ; 0,25 pt) 3) Déterminer l'énergie W perdue par le condensateur entre les dates t_0 ' = 0 et t' = 50 ms. (C ; 0,75 pt)

Exercice n°2: (3 points)


On dispose d'un générateur idéal de tension continue de f.é.m E, de deux lampes L_1 et L_2 identiques , d'une bobine d'inductance L et de résistance interne ${\bf r}$, d'un conducteur ohmique de résistance ${\bf r}$, d'un ampèremètre , d'un voltmètre et d'un interrupteur $({\bf K})$. Les différents dipôles et multimètres sont associés comme l'indique le schéma de la **figure 5**.


On ferme l'interrupteur (K).

- 1) a) Décrire les observations (en régime transitoire), interpréter et préciser et le phénomène mis en évidence.
- **2)** *a* Prévoir ce qu'on peut observer, au niveau des deux lampes, une fois que le régime permanent s'établit. Justifier.
- **b** En régime permanent, l'ampèremètre indique une intensité de courant I = 100 mA et le voltmètre une tension U = 0.6 V.

En déduire la valeur de la résistance r de la bobine.

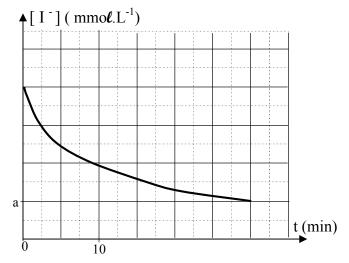
- 3) Le résistor r est supprimé et la bobine est remplacé par un condensateur déchargé (voir figure 6).
 - a) Décrire l'évolution de l'intensité de l'éclat de chacune de deux lampes lorsqu'on ferme l'interrupteur K.
 - b) Après une longue durée, le condensateur devient pratiquement chargé; On ouvre l'interrupteur K.
 Décrire l'évolution de l'intensité de l'éclat de chacune de deux lampes.

BON TRAVAIL

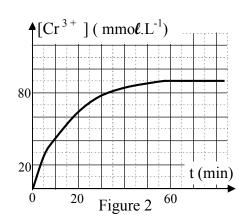
Lycée Teboulba Prof: Ben Kahla Jawher

4^{ème} Sc exp

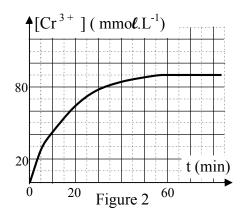
Devoir de contrôle n°1


sciences physiques

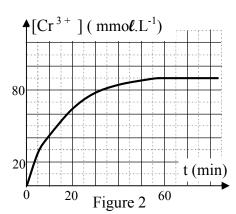
3


toutes les matières, tous les niveaux

Chimie: Exercice n°1:



Exercice n°2:


2)

3)

4)

Lycée TEBOULBA

Prof: BEN KAHLA JAWHER

4^{ème} Sc exp

Devoir de contrôle n°1

sciences physiques

4