LYCEE SAID BOU BAKKER MOKNINE PROF: SALAH HANNACHI

« 4^{éme} Sciences techniques 3 »

DEVOIR DE CONTRÔLE 2 MATHEMATIQUES

Le sujet comporte quatre exercices répartis en deux pages

EXERCICE 1: (3 points)

- I/Pour chacune des propositions suivantes, une seule des trois réponses est exacte. Indiquez la sans justifier.
- **1)** Une racine carrée du nombre complexe $\left(e^{i\frac{\pi}{4}}\right)^5$ est :

a) $e^{i\frac{\pi}{4}}$

b) $e^{i\frac{5\pi}{8}}$

c) $e^{i\frac{\pi}{8}}$

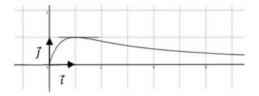
2) Soit a un réel non nul. On considère l'équation (E) : $ia. z^2 + z + a = 0$. On note z' et z'' les solutions de l'équation (E), alors:

a) $z' \times z'' = -i$

b) $z' \times z'' = \frac{-1}{ia}$

c) $z' \times z'' = \frac{1}{ia}$

II/Soit f une fonction deux fois dérivable sur $[0, +\infty[$ et voici ci-contre la courbe de sa fonction dérivée f'. Soit (C) la courbe représentative de la fonction f.

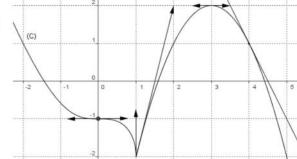


Pour chacune des propositions suivantes, répondre par : vrai ou faux sans justifier :

- 1) La fonction f est décroissante sur $[1, +\infty]$
- 2) Le point d'abscisse 1 de (C) est un point d'inflexion de (C).

EXERCICE 2: (5 points)

Dans le graphique ci-contre on a tracé dans un repère orthonormé $(O, \vec{\iota}, \vec{\jmath})$ la courbe (C) d'une fonction f définie sur IR.



- * (T) est la tangente à (C) au point A(4,1).
- * Chaque flèche représente un vecteur directeur d'une demi-tangente.
- * La courbe (C) admet exactement deux tangentes horizontales.
- \star La courbe (C) admet deux branches paraboliques de direction celle de (O,\vec{j})
- **1)** Déterminer : f'(0) , f'(1) , f'(3) , f'(4) , $\lim_{x \to 1^{-}} \frac{f(x)+2}{x-1}$, $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$
- 2) Déterminer les intervalles sur lesquels f est dérivable.
- 3) Dresser le tableau de variation de la fonction f et préciser les extrema.
- **4)** Soit la fonction g définie sur]-2,1[par : g(x) = fof(x)
 - a) Déterminer f(]-2,1[).
 - b) Montrer que g est dérivable sur]-2,1[puis écrire g'(x) à l'aide de f'(x) et f(x).
 - c) En déduire le sens de variation de la fonction g sur]-2,1[.

EXERCICE 3: (6 points)

Soit f la fonction définie sur [-1,1] par : $f(x) = (1-x)\sqrt{1-x^2}$

- 1) a) Etudier la dérivabilité de f à droite en (-1) et à gauche en 1.
 - b) Interpréter les résultats obtenus.
- 2) a) Montrer que f est dérivable sur]-1,1[et que $f'(x) = \frac{2x^2 x 1}{\sqrt{1 x^2}}$ pour tout -1 < x < 1
 - b) Dresser le tableau de variation de f. En déduire un encadrement de f(x).
- 3) On pose g(x) = f(x) x pour tout $x \in [-1,1]$.
 - a) Montrer que l'équation g(x) = 0 admet une unique solution α dans l'intervalle]0,1[.
 - b) En déduire que α est une solution dans IR de l'équation : $x^4-2x^3+x^2+2x-1=0$

EXERCICE 4: (6 points)

I/ 1) Résoudre dans \mathbb{C} l'équation (E) : $z^2 - (1+3i)z + 2i - 2 = 0$

- 2) Le plan complexe étant muni d'un repère orthonormé (o, \vec{u}, \vec{v}) . On donne les points A, B et D d'affixes respectives : 1 + i, 2 + 2i et 2i
 - a) Déterminer l'affixe du point C tel que ABCD soit un parallélogramme.
 - b) Vérifier que $z_B z_A = -i(z_D z_A)$
 - c) En déduire que le parallélogramme ABCD est un carré.

II/ On considère dans \mathbb{C} l'équation $(E_{\theta}): z^2 - (1 + 2i + i\cos\theta)z + 2i - 2\cos\theta = 0$; $\theta \in [0, \pi]$

- 1) a) Vérifier que $z_0=2i$ est une solution de l'équation (E_θ)
 - b) En déduire que l'autre solution de (E_{θ}) est $z_1 = 1 + i cos \theta$
- 2) Dans le plan complexe défini précédemment on donne les points K et M d'affixes respectifs $z_{\rm K}=\frac{i}{2}$ et $z_{\rm M}=1+icos\theta$.

Déterminer la valeur de θ pour laquelle la distance KM est minimale.

