Lycée Rue Ahmed Amara Le Kef Habib Gammar 2009-2010

Devoir De Synthèse N°1

Mathématiques

4^{ème} T₃ 2 Heures 1/2

Exercice 1 (3 points)

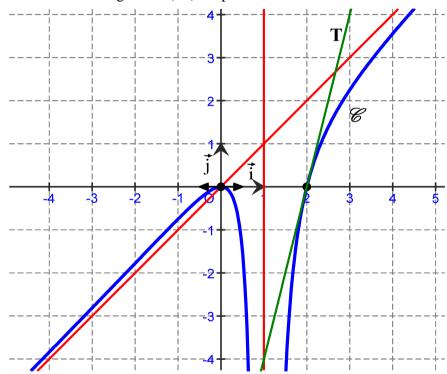
• Pour Chacune des questions suivantes une seule des quatre réponses proposées est exacte. Indiquer le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 1 point, une réponse fausse ou l'absence de réponse vaut 0 point.

- 1) La fonction $x \mapsto \tan(\sin x)$ est dérivable sur \mathbb{R} et sa dérivée est :
 - a) $x \mapsto 1 + \tan^2(\sin x)$
 - b) $x \mapsto \sin x (1 + \tan^2 (\cos x))$
 - c) $x \mapsto 1 + \tan^2(\cos x)$
 - d) $x \mapsto \cos x (1 + \tan^2 (\sin x))$
- 2) Soit f une fonction dérivable sur [-2,3] telle que $4 \le f'(x) \le 6$ alors :
 - a) $20 \le f(3) f(-2) \le 30$
 - b) $-8 \le f(3) f(-2) \le 18$
 - c) $4 \le f(3) f(-2) \le 6$
 - d) $-2 \le f(3) f(-2) \le 3$
- 3) L'équation $z^2 (2+i)z + 2i = 0$ admet pour solutions dans \mathbb{C}
 - a) $\{1, i\}$
 - b) $\{-2, i\}$
 - c) $\{2, i\}$
 - d) $\{-1,-2i\}$

Exercice 2 (4 points)

La courbe (\mathscr{C}) ci-dessous représente une fonction f définie sur $\mathbb{R}\setminus\{1\}$. Les droites d'équations x=1 et y=x étant des asymptotes à (\mathscr{C}) La droite T est la tangente à (\mathscr{C}) au point d'abscisse 2.



En utilisant le graphique, Déterminer :

- 1) $\lim_{x \to l^+} f(x)$; $\lim_{x \to l^-} f(x)$ $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
- 2) $\lim_{x \to +\infty} \frac{f(x)}{x}$ et $\lim_{x \to -\infty} (f(x) x)$
- 3) f'(0) et f'(2).
- 4) Le tableau de variation de f.
- 5) Le signe de f(x) suivant les valeurs de x.

Devoir De Synthèse N°1

Mathématiques

4^{ème} T₃ 2 Heures 2/2

Exercice 3 (7 points)

Soit la fonction f définie sur $[3,+\infty[$ par : $f(x) = x + \sqrt{x^2 - 9}$ et (\mathscr{C}) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- a) Etudier la dérivabilité de f à droite en 3.
 Interpréter graphiquement le résultat.
 - b) Montrer que pour $x \in \left]3,+\infty\right[$, $f'(x)=1+\frac{x}{\sqrt{x^2-9}}$
 - c) Montrer que f est une bijection de [3,+∞[sur un intervalle J que l'on déterminera.
- 2) a) Montrer que f⁻¹ est dérivable sur $]3,+\infty[$
 - b) Calculer f(5) et $(f^{-1})'(9)$.
 - c) Ecrire une équation de la tangente à la courbe de f⁻¹ au point d'abscisse 9.
- 3) Montrer que la droite Δ : y = 2x est une asymptote à ($\mathscr C$) au voisinage de $+\infty$
- 4) Déterminer $f^{-1}(x)$ pour $x \in [3, +\infty[$.

Exercice 4 (6 points)

- 1) a) Ecrire $(3-i)^2$ sous la forme algébrique.
 - b) Résoudre dans \mathbb{C} l'équation : $z^2 (7+7i)z 2 + 26i = 0$
- 2) Soit $f(z) = z^3 (6+7i)z^2 + (-9+19i)z 2 + 26i$
 - a) Vérifier que f(-1) = 0
 - b) Déterminer les nombres complexes b et c tels que

$$f(z) = (z+1)(z^2 + bz + c)$$

- c) Résoudre alors l'équation f(z) = 0
- 3) Soient dans le plan rapporté à un repère orthonormé direct (O, u, v), les points A(-1), B(3i), C(2+4i) et D(5+3i).

 Montrer que AB = CD et (BC)//(AD)

