Lycée Ibn khaldoun	Devoir de synthèse N°1	Classe: 4 ^{ème} Sc.tech 2	
Prof : Zribi Ramzi	9 décembre 2009	Durée : 2h	

Exercice n°1 (3pts)

Pour chaque question, une seule réponse est exacte. L'exercice consiste à donner la réponse exacte sans justification.

N°	questions	réponses		
		a	b	С
1°)	$f(x) = \frac{1}{3}x^3 - 2x^2 + 3x - 1$	$A(1,\frac{1}{3})$	$A(2, -\frac{1}{3})$	A(3,-1)
	C _f possède un seul point			
	d'inflexion qui est :			
2°)	$g(x) = \begin{cases} \frac{1 - \cos x}{x} & \sin x \neq 0 \\ g(0) = 0 \end{cases}$	g est dérivable en 0 et on a $g'(0) = 0$	g est dérivable en 0 et on a $g'(0) = \frac{1}{2}$	g n'est pas dérivable en 0
3°)	La forme exponentielle de $-3e^{-i\frac{\pi}{8}}$ est :	$3e^{-i\frac{\pi}{8}}$	$-3e^{i\frac{\pi}{8}}$	$3e^{i\frac{7\pi}{8}}$
4°)	Si z est une racine $7^{\text{ème}}$ de 1 et $z \neq 1$ alors	$1 + z + z^{2} + z^{3} + z^{4} + z^{5} + z^{6} = 0$	$1 + z + z^{2} + z^{3} + z^{4} + z^{5} + z^{6} = 1$	$1 + z + z^{2} + z^{3} + z^{4} + z^{5} + z^{6} = z^{7}$

Exercice n°2

(6pts)

- 1°) Résoudre dans l'équation : $z^2 (3 + 4i) 8 + 6i = 0$.
- 2°) Soit dans l'équation (E): $z^3 (1+4i)z^2 (14+2i)z 16 + 12i = 0$.
- a Vérifier que (-2)est une solution de l'équation (E).
- b Factoriser $z^3 (1 + 4i)z^2 (14 + 2i)z 16 + 12i$.
- c Résoudre alors l'équation (E).

- 3°) Dans le plan rapporté à un repère orthonormé $(0, \vec{1}, \vec{1})$, on désigne par A et B les points d'affixes respectives $z_A = -1 + 2i$ et $z_B = 4 + 2i$.
- a Ecrire $\frac{z_A}{z_B}$ sous forme algébrique en déduire que le triangle OAB est rectangle.

b – Soit \mathcal{C} le cercle circonscrit au triangle OAB et D le point d'affixe 4-3i.

Faire un schéma et montrer que la droite (OD) est tangente à 8.

Exercice n°3

(3pts)

En appliquant le théorème des inégalités des accroissements finis à la fonction $f(x) = \operatorname{tgx} \operatorname{sur} \operatorname{l'intervalle} \left[0, \frac{\pi}{4}\right] \operatorname{montrer} \operatorname{que} :$

pour tout $x \in \left[0, \frac{\pi}{4}\right]$ on $a : x \le tgx \le 2x$.

Exercice n°4 (8pts)

Soit
$$f(x) = \frac{x^2 - 2x - 2}{x - 3}.$$

- 1°) Donner D_f et calculer f(0).
- 2°) a Vérifier que $f(x) = x + 1 + \frac{1}{x-3}$.

b – En déduire que $\Delta : y = x + 1$ est une asymptote oblique de Cf.

- c Donner la position de Cf par rapport à Δ .
- 3°) Etudier les variation de f et donner son tableau de variation.
- 4°) Tracer Cf et Δ .
- 5°) Montrer que f réalise une bijection de $]-\infty$, 2] vers un intervalle J à préciser.
- 6°) Calculer $(f^{-1})'(\frac{2}{3})$.