Lycée Ibn khaldoun	Devoir de synthèse N°1	Classe: 4 ^{ème} Sc.techniques 1
Prof : Zribi Ramzi	8 décembre 2010	Durée : 2heures

Exercice n°1 (3pts)

Pour chaque question, une seule réponse est exacte. L'exercice consiste à donner la réponse exacte en

<u>justifiant.</u>

N°	questions	réponses		
		a	b	С
1	Soit f une fonction dérivable sur IR telle que : $f'(x) = \frac{1}{1+x^2}$ alors pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ on a: $(f \circ tg)'(x) =$	1	$1 + tg^2(x)$	$\frac{1}{1 + tg^2(x)}$
2	f une fonction dérivable et bijective de \mathbb{R} vers \mathbb{R} telle que la tangente à C_f au point d'abscisse 1 est T: $y = 2x + 1$ alors :	$(f^{-1})'(3) = \frac{1}{3}$	$(f^{-1})'(3) = -2$	$(f^{-1})'(3) = \frac{1}{2}$
3	Soit $z=\sqrt{3}+i$. $z^n\in i\mathbb{R} \ \text{signifie}$	n = 3k	n = 6k	n = 6k + 3

Exercice n°2

(8 pts)

le plan est muni d'un repère orthonormé $\mathcal{R} = (0, \vec{u}, \vec{v})$.

- 1°) Trouver les racines carrées de -8-6i.
- 2°) On considère dans \mathbb{C} l'équation : (E) $z^3 (3+i)z^2 + 6(1+i)z 8i = 0$.
 - a) Montrer que (E) possède une solution imaginaire pur e \mathbf{z}_0 que l'on précisera.
 - b) Trouver alors les autres solutions \mathbf{z}_1 et \mathbf{z}_2 .
- 3°) Soit A et B les images respectives de 1 + i et 2(1 i).
 - a) Placer les point A et B dans le repère ${\mathcal R}$.
 - b)Ecrire $\frac{z_B}{z_A}$ sous forme algebrique.
 - c)Que peut on conclure pour le triangle OAB.

Page 1

- 4°) Soit $\Theta \in [0,\pi]$ et $Z_{\Theta} = -2e^{i\Theta} + 1 + i$
 - a) Placer les points I et J d'affixes respectives Z_0 et \mathbf{Z}_{π}
 - b)Ecrire $Z_{\theta} (1 + i)$ sous forme exponentielle.
- c)Déterminer, alors, et construire l'ensemble E des points $M(Z_{\theta})$ lorsque θ décrit l'intervalle $[0,\pi]$.

Exercice n°3

(9 pts)

le plan est muni d'un repère orthonormé $\mathcal{R} = (0, \vec{1}, \vec{j})$

Soit f la fonction définie sur [0,2[par $f(x) = \sqrt{\frac{x}{2-x}}$.

- 1°)a) Etudier la dérivabilité de à droite de 0 et interpréter le résultat.
 - b)Montrer que f'(x) = $\frac{1}{(2-x)^2 \sqrt{\frac{x}{2-x}}} \text{ pour tout } x \in]0,2[.$
- 2°)a)Donner le tableau de variation de f.
 - b)Donner l'équation de la tangente T à Cf au point d'abscisse1
 - c) Montrer que $f(x) x = \frac{x(x-1)^2}{x + \sqrt{\frac{x}{2-x}}}$ pour tout $x \in]0,2[$;

en déduire la position de C_f par rapport à T.

- 3°) Tracer T et C_f.
- 4°)a) Montrer que f
 réalise une bijection de [0,2[vers un intervalle J à préciser.
 - b)Tracer $C_{f^{-1}}$ dans le même repère.
 - c)Donner l'expression $f^{-1}(x)$ pour tout $x \in J$.