Délégation régionale de Zaghouan lycée cite	Devoir de synthèse N 2 Classe 4 ^{ème} technique 3 et 5
Ennozha	Prof : M ^r : Yahyaoui Durée 3 ^h

Exercice N 1

Pour chacune des questions suivantes, sont proposées trois réponses dont une seule est correcte, on demande de la préciser. Aucune justification n'est demandée.

1. Soit la fonction définie sur
$$[0,e^2]$$
 $par \ f(x) = \sqrt{x(2-Ln(x))}$ a pour dérivée : a/ $f'(x) = \frac{x(2-Ln(x))}{2\sqrt{x(2-Ln(x))}}b/$ $f'(x) = \frac{1-Ln(x)}{2\sqrt{x(2-Ln(x))}}c/$ $f'(x) = \frac{1-Ln(x)}{\sqrt{x(2-Ln(x))}}$

2. Soit A, B et C trois points de l'espace orienté non alignés. L'ensemble des points de l'espace tels que $(\overrightarrow{AB} \land \overrightarrow{AC}) \land \overrightarrow{AM} = 0$ est : a/le plan (ABC) b/ la droite passant par A et perpendiculaire à (ABC) c/ $\{A\}$

Exercice N 2(5 points)

Soit f la fonction définie sur]0,2[$par f(x) = Ln(\frac{x}{2-x})$

- 1. Montrer que f est dérivable sur]0,2[et que $f'(x) = \frac{2}{x(2-x)}$
- 2. Dresser le tableau de variation de f
- 3. a/ Montrer que le point I (1,0) est un centre de symétrie pour la courbe (C_f) b/ Montrer que le point I(1,0) est un point d'inflexion de la courbe (C_f) puis écrire une équation de la tangente en ce point.
- 4. a/ Montrer que f réalise une bijection de]0,2[sur IR ; f^{-1} sa fonction réciproque b/ Calculer $(f^{-1})(x)$ pour tout réel x
- 5. Tracer (C_f) , T, (C_{f-1}) dans un même repère.

Exercice N 3

A/ Soit g la fonction définie sur IR par $g(x) = 2e^x - x - 2$

- 1. Déterminer la limite de g en- ∞ puis celle en + ∞
- 2. Dresser le tableau de variation de g
- 3. Démontrer que l'équation g(x)=0 admet exactement deux solutions 0 et α er que $\alpha \in]-1,6,-1,5[$
- 4. Montrer que le signe de g est le suivant :

B/ La fonction f est définie sur IR par $f(x)=e^{2x}-(x+1)e^x$

- 1. Vérifier que : $f(x) = e^{2x} \left(1 \frac{x}{e^x} \frac{1}{e^x}\right)$ puis en déduire la limite de f en $+\infty$
- 2. Déterminer la limite de f en -∞
- 3. Montrer que $f'(x) = e^x(g(x))$ puis dresser le tableau de variation de f

- 4. Montrer que $: \frac{f(x)}{x} = e^x \left(\frac{e^x}{x} \left(\frac{x+1}{x} \right) \right)$ puis calculer $\lim_{x \to +\infty} \left(\frac{f(x)}{x} \right)$ et interpréter graphiquement le résultat
- 5. Montrer que $f(\alpha) = -\frac{\alpha^2 + 2\alpha}{4}$ puis tracer (C_f)
- 6. Soit la fonction h définie par $h(x) = xe^x$ calculer h'(x), déterminer alors une primitive F de f telle que F(0) = 3

Exercice N 4

L'espace étant rapporté à un repère orthonormé direct (O,\vec{t},\vec{j} , \vec{k}); on considère les points : A(0,0,2); B(1,0,0); C(0,-1,0) et I(1,1,1)

- 1. a) Déterminer les composantes du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$. En déduire que les points A, B et C déterminent un plan. On notera P = (ABC)
 - b) $(\overrightarrow{AB} \land \overrightarrow{AC}).\overrightarrow{AI}$. En déduire que I n'appartient pas au plan P
 - c) Calculer le volume du tétraèdre ABCI
 - d) Déterminer alors la distance du point I au plan P
- 2. On désigne par S l'ensemble des points M(x, y, z) de l'espace tels que $x^2 + y^2 + z^2 4y 5 = 0$
- a) Montrer que S est une sphère , préciser son centre ω et son rayon
- b) Déterminer une équation cartésienne de P
- c) Etudier la position relative de S et P et caractériser leur intersection.
- 3. Pour tout m on associe le plan $P_m : 2mx + (1 2m)y + mz + 1 2m = 0$
 - a) Déterminer m pour que le plan P_m soit tangent à S
 - b) Soit H le point de contact de P_m et S lorsqu'ils sont tangents ; déterminer les coordonnées de H

