Lycée Rue Ahmed Amara Le Kef Habib Gammar 2010-2011

Devoir De Synthèse N°3

Mathématiques

4ème T 3 Heures 1/3

Exercice 1 (3 points)

- Pour Chacune des questions suivantes une seule des trois réponses proposées est exacte. Indiquer le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.
- 1) Le réel $\int_{\ln 2}^{\ln 3} \frac{e^x}{(e^x + 1)^2} dx$ est égal à :

 - a) $-\frac{1}{12}$ b) $\ln(\frac{3}{4})$ c) $\frac{1}{12}$
- 2) Soit f la fonction définie et dérivable sur \mathbb{R} par $f(x) = \ln(x^2 + 5)$ Alors le nombre dérivé de la fonction f en 1 est :
 - a) $\frac{1}{3}$

- **b**) $\frac{1}{\ln(6)}$
- 3) L'espace est rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$. On considère les points A(1,2,3), B(1,1,1) et C(3,2,1). Le plan (ABC) est parallèle au plan P d'équation :
 - a) x + y z = 0
- **b)** x + y + z 3 = 0 **c)** x 2y + z + 5 = 0
- 4) Soit (U_n) la suite définie sur \mathbb{N} par : $U_n = \frac{6 + \left(-\frac{2}{3}\right)^n}{2 + r}$ Cette suite:
 - a) a pour limite 3
- **b)** a pour limite 0
- c) n'a pas de limite

Exercice 2 (5 points)

L'espace est rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$.

On considère les points A(1,-1,4), B(7,-1,-2) et C(1,5,-2).

- 1) a) Vérifier que les points A, B et C ne sont pas alignés.
 - b) Montrer que le triangle ABC est équilatéral.
- c) Montrer que le vecteur $\overrightarrow{N} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ est un vecteur normal au plan (ABC)
- d) En déduire qu'une équation cartésienne du plan (ABC) est :

$$x + y + z - 4 = 0$$

2) Soit Δ la droite dont une représentation paramétrique est :

$$\Delta: \begin{cases} x = -2\alpha \\ y = -2\alpha - 2 ; \alpha \in \mathbb{R} \\ z = -2\alpha - 3 \end{cases}$$

- a) Montrer que la droite Δ est perpendiculaire au plan (ABC).
- b) Montrer que les coordonnées du point G, intersection de la droite Δ et du plan (ABC) sont (3,1,0)
- c) Montrer que G est le centre de gravité du triangle ABC.
- 3) Soit S la sphère de centre I(1,1,-1) et de rayon $\sqrt{3}$. Montrer que le plan (ABC) est tangent à la sphère S

Devoir De Synthèse N°3

Mathématiques

4^{ème} T 3 Heures 2/3

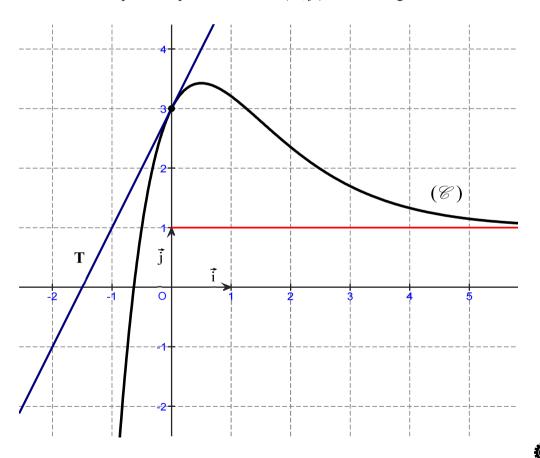
Exercice 3 (4 points)

Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) .

- La courbe (\mathscr{C}) ci-dessous représente une fonction f définie et dérivable sur \mathbb{R}
- La droite T est la tangente à (\mathscr{C}) au point d'abscisse 0.
- La courbe (%) admet:

Une asymptote d'équation y = 1 au voisinage de $+\infty$.

Une branche parabolique de direction (O, \vec{j}) au voisinage de $-\infty$.



I) En utilisant le graphique :

1) Déterminer
$$\lim_{x \to +\infty} f(x)$$
, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$

- 2) Déterminer f(0) et f'(0)
- 3) Encadrer par deux entiers consécutifs l'aire \mathcal{A} , en unités d'aire, de la partie du plan limité par la courbe (\mathcal{C}) , la droite des abscisses et les droites d'équations x = 0 et x = 1.

II) On admet que
$$f(x) = 1 + \frac{a x + b}{e^x}$$
; $a, b \in \mathbb{R}$

- 1) a) Déterminer l'expression de f'(x) en fonction de a, de b et de x.
 - b) Démontrer que l'on a, pour tout réel $x : f(x) = 1 + \frac{4x + 2}{e^x}$
- 2) a) Vérifier que la fonction F définie sur \mathbb{R} par : $F(x) = x + \frac{-4x 6}{e^x}$ est une primitive de f sur \mathbb{R} .
 - b) Calculer l'aire \mathscr{A} de la partie du plan limité par la courbe (\mathscr{C}), la droite des abscisses et les droites d'équations x=0 et x=1.

Lycée Rue Ahmed Amara Le Kef Habib Gammar 2010-2011

Devoir De Synthèse N°3

Mathématiques

4^{ème} T 3 Heures 3/3

Exercice 4 (5 points)

I)

Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = x - x \ln x$

- 1) Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to 0^+} f(x)$
- 2) Montrer que f est dérivable sur $]0,+\infty[$ et que $f'(x) = -\ln x$
- 3) Dresser le tableau de variations de la fonction f.

II)

Soit (U_n) la suite définie pour tout entier nature $n \ge 1$ par $U_n = \frac{e^n}{n^n}$

- 1) Calculer U_1 , U_2 et U_3
- 2) Soit (V_n) la suite définie pour tout entier nature $n \ge 1$ par $V_n = \ln(U_n)$
 - a) Montrer que $V_n = f(n)$
 - b) Déterminer le sens de variation de la suite (V_n)
 - c) En déduire que la suite (U_n) est décroissante.
- 3) Montrer que la suite (U_n) est bornée.
- 4) Montrer que la suite (U_n) est convergente et déterminer sa limite.

Exercice 5 (3 points)

Soit f la fonction définie $[0,+\infty[$ par $f(x) = \frac{1}{2}xe^{2x} - \frac{e}{2}x$

On désigne par (\mathscr{C}) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) Montrer que $f(x) \le 0 \Leftrightarrow x \in \left[0, \frac{1}{2}\right]$
- 2) a) Calculer, à l'aide d'une intégration par parties, l'intégrale $\int_0^{\frac{1}{2}} x e^{2x} dx$
 - b) En déduire, en unité d'aire, la valeur exacte de l'aire de la partie du plan située en dessous de l'axe des abscisses et au-dessus de la courbe (\mathscr{C}).