الشبكة التربوية التونسية www.edunet.tn

REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

SESSION DE CONTROLE EXAMEN DU BACCALAURÉAT SESSION DE JUIN 2009

SECTION: ECONOMIE ET GESTION

EPREUVE: MATHEMATIQUES

DURÉE : 2 heures

COEFFICIENT: 2

Exercice 1 (3 points)

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 0,75 point, une réponse fausse ou l'absence de réponse vaut 0 point.

1) Les nombres complexes 1 - 2i et 1 + 2i sont les solutions de l'équation

a)
$$z^2 - 2z + 5 = 0$$

b)
$$z^2 - 5z + 2 = 0$$

c)
$$z^2 - 2iz + 5 = 0$$
.

A et B sont deux points d'affixes respectives z_A = 1 - i et z_B = -2 + 3i.
La distance AB est égale à

3) Soit f la fonction définie sur IR par $f(x) = e^{3x} - 1$ et \mathscr{C} sa courbe représentative dans un repère $(0, \vec{i}, \vec{j})$.

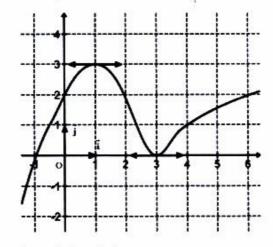
Une équation de la tangente à @ au point d'abscisse 0 est

a)
$$y = 3x - 1$$

b)
$$y = 3x$$

c)
$$y = x - 1$$
.

4) On donne ci-dessous la courbe représentative de la fonction dérivée f' d'une fonction f .

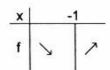


Le tableau donnant le sens de variation de f est

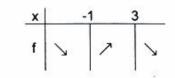
a)



b)



c)



الشبكة التربوية التونسية www.edunet.tn

Exercice 2 (6 points)

Soit f la fonction définie sur l'intervalle $I = \int 0, +\infty$ [par $f(x) = \frac{1}{4}x^2 - 1 - 2 \ln x$.

On désigne par $\mathscr C$ sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$ (l'unité graphique est de 1 cm).

1) a) Montrer que $\lim_{x \to 0^+} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$.

Interpréter graphiquement ces résultats

- b) Montrer que pour tout x de I, $f'(x) = \frac{(x-2)(x+2)}{2x}$.
- c) Dresser le tableau de variations de f sur I
- 2) a) Montrer que l'équation f(x) = 0 admet exactement deux solutions α et β dans l'intervalle I et que $0.5 < \alpha < 0.7$ et $3.7 < \beta < 3.9$.
 - b) Tracer la courbe &.
- 3) a) Montrer que la fonction F définie sur I par $F(x) = \frac{1}{12}x^3 + x 2x\ln x$ est une primitive de f sur I.
 - b) Soit \mathscr{A} l'aire, exprimée en cm², de la partie du plan limitée par l'axe des abscisses, la courbe \mathscr{C} et les droites d'équations $x = \alpha$ et $x = \beta$.

Donner une valeur approchée de \mathcal{A} en prenant α = 0,6 et β = 3,8.

Exercice 3 (5 points)

Une usine fabrique des téléviseurs, des lecteurs DVD et des chaînes stéréo. Elle utilise dans la fabrication de ces appareils trois types de composants électroniques notés A, B et C.

- La production d'un téléviseur nécessite 1 composant électronique de type A, 4 de type B et 2 de type C.
- La production d'un lecteur DVD nécessite 2 composants électroniques de type A, 5 de type B et 4 de type C.
- La production d'une chaîne stéréo nécessite 2 composants électroniques de type A, 2 de type B et 5 de type C.

La consommation journalière en composants électroniques est de 150 de type A, de 300 de type B et de 330 de type C.

On désigne par a, b et c respectivement le nombre de téléviseurs, de lecteurs DVD et de chaînes stéréo que produit l'usine en un jour.

- 1) Montrer que (a,b,c) vérifie le système (S) : $\begin{cases} x + 2y + 2z = 150 \\ 4x + 5y + 2z = 300 \\ 2x + 4y + 5z = 330 \end{cases}$
- 2) Ecrire la matrice M du système (S).
- 3) Soit la matrice N = $\frac{1}{3} \begin{pmatrix} -17 & 2 & 6 \\ 16 & -1 & -6 \\ -6 & 0 & 3 \end{pmatrix}$

Calculer M x N . En déduire que M est inversible et donner sa matrice inverse.

2

4) Déterminer alors a, b et c.

الشبكة التربوية التونسية www.edunet.tn

Exercice 4 (6 points)

Le tableau ci-dessous donne l'évolution du prix d'un quintal, exprimé en dinars, d'un produit agricole :

Année	2003	2004	2005	2006	2007	2008
Rang x _i	0	1	2	3	4	5
Prix y _i du quintal	52,1	58,5	66,4	74,7	84,6	96

- a) Représenter le nuage de points associée à la série statistique (x_i, y_i) dans un repère orthogonal (unités graphiques : 2 cm pour une année et 1 cm pour 10 dinars)
 - b) Déterminer les coordonnées du point moyen G de la série (xi, yi) et le placer sur le graphique.
- 2) On admet dans cette question que le nuage de points suggère un ajustement affine.
 - a) Vérifier qu'une équation de la droite d'ajustement par la méthode de Mayer de ce nuage est y = 8,7 x + 50,3.
 - b) Déterminer, à l'aide de cet ajustement, le prix du quintal en 2009.
- 3) En réalité, le prix du quintal en 2009 de ce produit s'est élevé à 106,8 dinars. On a alors intérêt à changer d'ajustement. On considère l'ajustement défini par f : x → f(x)= 52,1 e^{0,12x}.
 - a) Recopier et compléter le tableau suivant :

Rang x _i	0	1	2	3	4	5	6
Prix y _i du quintal	52,1	58,5	66,4	74,7	84,6	96	106,8
8,7 x _i + 50,3							
52,1 e ^{0,12x} i							

- b) Lequel des deux ajustements est le plus pertinent ?
- c) Quel serait alors, d'après cet ajustement f, le prix du quintal de ce produit en 2010 ?