Session de Juin 2015

Section : Économie et gestion

Épreuve : Mathématiques

Exercice 1

[)	II)			
1)	2)	1)	2)		
а	b	b	а		

Exercice 2

On considère les matrices $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 5 \end{pmatrix}$ $B = \begin{pmatrix} 7 & -6 & 1 \\ -4 & 2 & 0 \\ -1 & 2 & -1 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

1)
$$d\acute{e}t(A) = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 5 \end{vmatrix} = 1 \times \begin{vmatrix} 3 & 2 \\ 4 & 5 \end{vmatrix} - 2 \times \begin{vmatrix} 2 & 1 \\ 4 & 5 \end{vmatrix} + 3 \times \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 7 - 2 \times 6 + 3 \times 1 = -2.$$

dét(A) ≠ 0, d'où la matrice A est inversible.

$$2)a) \ A \times B + 2I = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 5 \end{pmatrix} \times \begin{pmatrix} 7 & -6 & 1 \\ -4 & 2 & 0 \\ -1 & 2 & -1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} .$$

b) $A \times B + 2I = 0$, où 0 est la matrice nulle d'ordre 3.

$$A \times B + 2I = 0 \iff A \times B = -2I$$

$$\iff A \times \left(-\frac{1}{2}B\right) = I$$

D'où l'inverse de A est $A^{-1} = -\frac{1}{2}B$.

3)a) (S):
$$\begin{cases} x+2y+z=-2 \\ 2x+3y+2z=4 \\ 3x+4y+5z=8 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 5 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 8 \end{pmatrix}.$$

b) (S):
$$\begin{cases} x+2y+z=-2\\ 2x+3y+2z=4\\ 3x+4y+5z=8 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 2 & 1\\ 2 & 3 & 2\\ 3 & 4 & 5 \end{pmatrix} \times \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -2\\ 4\\ 8 \end{pmatrix}$$
$$\Leftrightarrow A \times \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -2\\ 4\\ 8 \end{pmatrix}$$
$$\Leftrightarrow -\frac{1}{2}B \times A \times \begin{pmatrix} x\\ y\\ z \end{pmatrix} = -\frac{1}{2}B \times \begin{pmatrix} -2\\ 4\\ 8 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} x\\ y\\ z \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 7 & -6 & 1\\ -4 & 2 & 0\\ -1 & 2 & -1 \end{pmatrix} \times \begin{pmatrix} -2\\ 4\\ 8 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 15\\ -8\\ -1 \end{pmatrix}$$

D'où
$$S_{\mathbb{R}^3} = \{(15, -8, -1)\}.$$

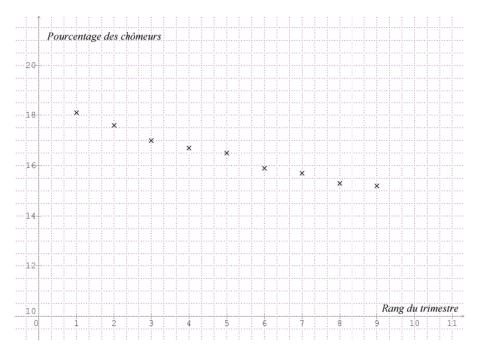
Exercice 3

Le tableau donne les pourcentages des chômeurs en Tunisie pendant neuf trimestres successifs à compter du premier trimestre de l'année 2012.

Rang du trimestre x _i	1	2	3	4	5	6	7	8	9
Pourcentage des chômeurs yi	18,1	17,6	17	16,7	16,5	15,9	15,7	15,3	15,2

Source: I.N.S

1) Le nuage des points de la série statistique (x_i, y_i).



2)a)
$$r(x, y) = -0.99$$
.

- b) On peut remarquer que le nuage des points (x_i, y_i) est allongé suivant une droite. Donc un ajustement affine entre x et y est justifié.
- 3)a) Une équation de la droite de régression de y en x est y = -0.38 x + 18.31.
 - b) Le pourcentage des chômeurs en Tunisie pendant le deuxième trimestre de l'année 2015. Le deuxième trimestre de l'année 2015 correspond à x = 14.

D'où
$$y = -0.38 \times 14 + 18.31 = 12.99 \approx 13$$
.

Ainsi on estime le pourcentage des chômeurs en Tunisie pendant le deuxième trimestre de l'année 2015 à 13%.

Exercice 4

Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{1 + \ln x}{x}$. (C) sa courbe représentative dans le plan rapporté à un repère orthonormé (O,\vec{i},\vec{j}) .

1)a)
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{1+\ln x}{x} = \lim_{x\to 0^+} \frac{1}{x}(1+\ln x) = -\infty, \text{ car } \lim_{x\to 0^+} \frac{1}{x} = +\infty \text{ et } \lim_{x\to 0^+} \ln x = -\infty.$$

$$\lim_{x\to 0^+} f(x) = -\infty, \text{ d'où l'axe des ordonnées est une asymptote à (C)}.$$

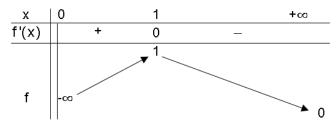
b)
$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{1+\ln x}{x} = \lim_{x\to +\infty} \frac{1}{x} + \frac{\ln x}{x} = 0$$
, car $\lim_{x\to +\infty} \frac{1}{x} = 0$ et $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$. $\lim_{x\to +\infty} f(x) = 0$, d'où l'axe des abscisses est une asymptote horizontale pour (C).

2)a)
$$f(x) = \frac{1 + \ln x}{x}, x \in]0, +\infty[.$$

$$f'(x) = \frac{(1 + \ln x)' x - (1 + \ln x)}{x^2} = \frac{\frac{1}{x}.x - (1 + \ln x)}{x^2} = \frac{-\ln x}{x^2}, \ x \in \left]0, +\infty\right[.$$

$$f'(1) = \frac{-\ln 1}{1^2} = 0.$$

b) Le tableau de variation de f.



c) On a $f([1, +\infty[) =]0, 1]$, d'où sur l'intervalle $[1, +\infty[$ f ne s'annule pas.

La fonction f est continue et strictement croissante sur]0,1], donc elle réalise une bijection de]0,1] sur $f(]0,1]) =]-\infty, 1].$

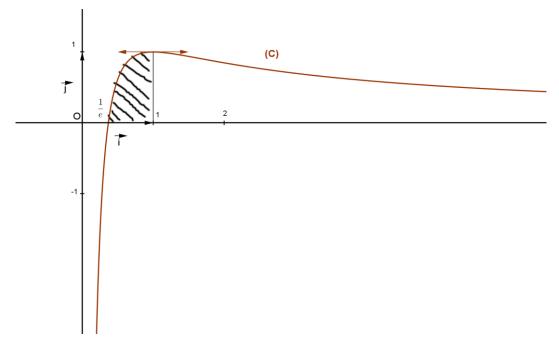
 $0 \in]-\infty$, 1], d'où il existe un unique réel $\alpha \in]0, 1]$ telque $f(\alpha) = 0$.

Ainsi l'équation f(x) = 0 admet une unique solution α .

Soit
$$x \in]0, +\infty[$$
, $f(x) = 0 \Leftrightarrow \frac{1 + \ln x}{x} = 0$
 $\Leftrightarrow 1 + \ln x = 0$
 $\Leftrightarrow \ln x = -1$
 $\Leftrightarrow x = e^{-1} = \frac{1}{e}$.

Ainsi
$$\alpha = \frac{1}{e}$$
.

d) La courbe (C) de la fonction f :



3)a) Soit F la fonction définie sur $]0, +\infty[$ par $F(x) = \frac{1}{2}(2 + \ln x)\ln x$.

La fonction $x\mapsto \ln x$ et la fonction $x\mapsto 2+\ln x$ sont dérivables sur $]0,+\infty[$, d'où F est dérivable sur $]0,+\infty[$.

$$\begin{split} F'(x) &= \frac{1}{2} \Big(2 + \ln x \Big)' \ln x \ + \frac{1}{2} \Big(2 + \ln x \Big) (\ln x)' \ = \frac{1}{2} \frac{1}{x} \ln x \ + \frac{1}{2} \Big(2 + \ln x \Big) \frac{1}{x} \\ &= \frac{1}{2} \frac{1}{x} \Big(2 + 2 \ln x \Big) = \frac{1 + \ln x}{x} = f(x) \end{split}$$

D'où F est une primitive de f sur $\left]0,\,+\,\infty\right[$.

b) R la région du plan délimitée par la courbe (C), l'axe des abscisses et les droites d'équations $x = e^{-1}$ et x = 1. Soit A l'aire de cette région R.

$$\begin{split} A &= \int_{e^{-1}}^1 f(x) \, dx = \left[F(x) \right]_{e^{-1}}^1 = F(1) - F(e^{-1}) \\ &= 0 - \frac{1}{2} \Big(2 + \ln e^{-1} \Big) \ln e^{-1} = -\frac{1}{2} \Big(2 + (-1) \Big) \times (-1) = \frac{1}{2} \text{unit\'e d'aire.} \end{split}$$