EXAMEN DU BACCALAUREAT 2013

Section : Sc. Info. Epreuve : Algorithmique et Programmation

CORRIGE

Exercice 1 (2.5 points = 0.25 + 2 + 0.25)

1- Déterminer le type de retour de la fonction **Inconnue**.

Entier

2- Donner la trace d'exécution ainsi que les résultats retournés par la fonction **Inconnue** pour les valeurs de A et B suivantes :

•	A =	6	et B	3 = 1	15
-	<i>1</i> 1 —	$\mathbf{\sigma}$	$\sim \iota$, — ,	·

	Inconnue
A < B	<i>Inconnue</i> (6, 9) * 15 Div 9
A < B	<i>Inconnue</i> (6, 3) * 9 <i>Div</i> 3
A > B	<i>Inconnue</i> (3, 3) * 6 <i>Div</i> 3
A = B	3

Le résultat retourné par la fonction est égal à 3 * 6 Div 3 * 9 Div 3 * 15 Div 9= 30

• Pour A = 8 et B = 3

	Inconnue
A > B	<i>Inconnue</i> (5, 3) * 8 <i>Div</i> 5
A > B	Inconnue (2, 3)*5 Div 2
A < B	Inconnue (2, 1)* 3 Div 1
A > B	Inconnue (1, 1)*2 Div 1
A = B	1

Le résultat retourné par la fonction est égal à 1*2 Div 1* 3 Div 1* 5 Div 2*8 Div 5=24

3- Déduire le rôle de la fonction **Inconnue**. *La fonction Inconnue retourne le PPCM de deux entiers A et B*

Exercice 2 (4 points = 1 + 3)

1- Donner la décomposition en une somme de puissances de 2 distinctes pour les nombres 31 et 56.

$$31 = 2^{0} + 2^{1} + 2^{2} + 2^{3} + 2^{4}$$
$$56 = 2^{3} + 2^{4} + 2^{5}$$

- 2- Ecrire un algorithme d'un module qui permet d'afficher la décomposition d'un entier **N**, en une somme de puissances de **2** distinctes.
 - 0) DEF PROC Affiche_puissance (N: entier)

Alors
$$convch(P,PP)$$

 $Ch \leftarrow Ch + "2^" + PP + " + "$

 $P \leftarrow P+1$ $N \leftarrow N Div 2$

Fin si

FinTanque
2) Efface(Ch,long(Ch),1)

- 3) Ecrire(Ch)
- 4) Fin Affiche_puissance

Exercice 3 (3.5 points = 1.25 + 2.25)

1- En utilisant la définition donnée ci-dessus, écrire un algorithme d'une fonction nommée

Combinaison permettant de calculer $\, \, C_n^p \, . \,$

Algorithme de la fonction combinaison :

- 0) DEF FN Combinaison (n, p: entier): Entier long
- 1) $Si (p = 0) ou (n = p) Alors Combinaison \leftarrow 1$ $Sinon Combinaison \leftarrow Combinaison(n-1,p) + Combinaison(n-1,p-1)$ FinSi
- 2) Fin FN Combinaison
- 2- Utiliser la fonction **Combinaison** afin d'écrire un algorithme d'un module qui permet de déterminer une valeur approchée de **S** à **epsilon** près.

Algorithme de la fonction Approchée_S:

- 0) DEF FN Approchée_S (epsilon : réel) : Réel
- 1) $S \leftarrow 1$ $I \leftarrow 0$

puis ← 1

Répéter

$$I \leftarrow i+1$$
$$S \ pred \leftarrow S$$

 $puis \leftarrow puis * 2$

 $S \leftarrow S + puis * 1/((2 * i+1) * FN combinaison(2*i,i))$

 $Jusqu'à ABS (S_pred-S) \le epsilon$

- 2) Approchée_ $S \leftarrow S$
- 3) Fin Approchée_S

Problème (10 points)

1- Analyse du programme principal :

```
Résultat = fc

fc = Associer(fc, ''c:\fcode.txt'')

Proc Former_fcode(fc, fint, N)

fint = Associer(fint, ''c:\fint.txt'')

Proc Former_finter(fint, M, N)

(M, N) = Proc Remplissage(M, N)
```

T.D.N.T.

Type

Tab = Tableau de 20 x 20 de caractères

Objet	Type	
fc	Fichier texte	
fint	Fichier texte	
M	Tab	
N	Entier	
Remplissage	Procédure	
Former_finter	Procédure	
Former_fcode	Procédure	

```
2- Analyse des modules :
  Analyse de la procédure Remplissage :
   DEF PROC Remplissage(Var M: Tab; Var N:Entier)
   Résultat = M,N
   M = [N = donnée]
                     Pour i de 1 à N faire
                         Pour j de 1 à N faire
                                M[i,j] \leftarrow CHR(Al\'eatoire(26) + 65)
                         FinPour
                      FinPour
   Fin Remplissage
   Analyse de la procédure Former_finter :
    DEF PROC Former_finter(Var finter : text, M : Tab, N : Entier)
    Résultat = finter
    finter = [i \leftarrow 1, j \leftarrow N]
                  Répéter
                           Ch←''''
                           Pour k de i à j Faire
                                 Ch \leftarrow Ch + M[i,k]
                           FinPour
                           Pour K de i+1 à j Faire
                                 Ch \leftarrow Ch + M/k,j
                           FinPour
                           Pour k de j-1 à i Pas -1 Faire
                                 Ch \leftarrow Ch + M[j,k]
                           Fin Pour
                           Pour k de j-1 à i+1 Pas -1 Faire
                                 Ch \leftarrow Ch + M/k,i
                           FinPour
                           Ecrire_nl(Finter, Ch)
                           i←i+1
                           j←j-1
                  Jusqu'à i>j
   Fin Former_finter
```

T.D.O.L

Objet	Type	
i	Entier	
J	Entier	
k	Entier	
Ch	Chaîne	

Analyse de la procédure Former_fcode :

```
DEF\ PROC\ Former\_fcode(Var\ fcode\ ,\ finter: text)
R\'esultat = fcode
fcode = [Ouvrir(fcode), Ouvrir(finter), Ecrire\_nl(fcode, FN\ Conv\_base(n,2))]
Tantque\ Non(FinFichier(finter))\ faire
Lire\_nl(finter, ch1)
Ch2 \leftarrow ""
Pour\ i\ de\ 1\ \grave{a}\ Long(ch1)\ faire
ch2 \leftarrow ch2 + FN\ Conv\_base(Ord(ch1[i]), 16) + "#"
FinPour
Ecrire\_nl(fcode, ch2)
FinTantque
Fermer(fcode), fermer(finter)
```

Fin Former_fcode

T.D.O.L

1.2.0.2		
Objet	Type	
Conv_base	fonction	
i	Entier	
ch1	Chaîne	
ch2	Chaîne	

Analyse de la fonction Conv_base :

```
DEF FN Conv_base(N,B: Entier): Chaine

Résultat = Conv_base \leftarrow Ch

Ch = [Ch \leftarrow '''']

Répéter

R \leftarrow N Mod B

Si R \geq 10 Alors Ch_R \leftarrow Chr(55+R)

Sinon Convch (R, Ch_R)

FinSi

Ch \leftarrow Ch_R + Ch

N \leftarrow N Div B

Jusqu'à N = 0

Fin Conv_base
```

T.D.O.L.

Objet	Type
Ch, Ch_R	Chaîne
R	Entier