Corrigé : Algorithmique et Programmation

Section : Sciences de l'informatique Session de contrôle 2017

Exercice 1: (3 points)

Question n°1:

	Id=123	Id=113	Id=125	Id=115	Id=363	Id=263	Id=430	Id=380	Id=455	Id=663
P	Age=57	Age=57	Age=22	Age=30	Age=35	Age=18	Age=33	Age=55	Age=23	Age=19
	Genre=M	Genre=F	Genre=M	Genre=F	Genre=M	Genre=F	Genre=M	Genre=F	Genre=F	Genre=F

Question n°2:

Cette procédure permet de **fusionner** les deux tableaux H et F en **un tableau P** d'une manière **alternée** jusqu'à la fin du tableau ayant la plus petite taille ; **le reste des valeurs de l'autre tableau seront placées successivement à la fin de P**.

Question n°3:

```
0) Def Proc Traitement (n1, n2 : Octet ; H, F : Tab1 ; Var k : Octet ; Var P : Tab2)
1) k \leftarrow 0, i \leftarrow 0, j \leftarrow 0
    Répéter
             k\leftarrow k+1
             i \leftarrow i+1
            j \leftarrow j+1
             Si\ H[i].id < F[j].id\ Alors
                                               P[k] \leftarrow H[i]
                                               j ←j-1
                               Sinon
                                        P[k] \leftarrow F[j]
                                        i←i-1
             Fin Si
    Jusqu'à (i=n1) ou (j=n2)
    Si(i=n1) Alors
                      Pour c de j+1 à n2 Faire
                               k\leftarrow k+1
                               P/k \leftarrow F/c
                      FinPour
               Sinon
                      Pour c de i+1 à n1 Faire
                               k\leftarrow k+1
                               P[k] \leftarrow H[c]
                      FinPour
     FinSi
2) Fin Traitement
```

Exercice 2: (3 points)

Question n°1:

Question n°2:

Cette fonction retourne la **puissance** d'**ordre n** d'un entier a (aⁿ).

Question $n^{\circ} 3$:

- 0) Def FN F (a, n : Entier) : Entier Long
- 1) Si n = 0 Alors $F \leftarrow 1$

Sinon Si n mod
$$2 = 0$$
 Alors $F \leftarrow FN F$ ($a*a$, n div 2)
Sinon $F \leftarrow a * FN F$ ($a*a$, (n-1) div 2)

FinSi

2) Fin F

Exercice 3: (4 points)

L'algorithme de la fonction Brun:

- 0) Def FN Brun (Epsilon: Réel): Réel
- 1) $B \leftarrow 0, k \leftarrow 1$

Répéter

 $k \leftarrow k + 2$

Si (FN Premier(k)) et (FN Premier (k+2)) Alors

B1←B

 $B \leftarrow B + 1/k + 1/(k+2)$

FinSi

Jusqu'à abs (B-B1) < Epsilon

- 2) Brun **←**B
- 3) Fin Brun

Tableau de déclaration des objets

Objet	Type / Nature	Rôle
K	Entier Long	Compteur d'entier impair
B, B1	Réel	Calculer la constante de Brun
Premier	Fonction	Vérifier si un entier est premier

L'algorithme de la fonction Premier :

- 0) Def Fn Premier (N : Entier Long) : Booléen
- 1) i**←**2

TANTQUE (N mod i <>0) ET (i \leq N div 2) FAIRE i \leftarrow i+1

FinTantque

- 2) Premier \leftarrow (i> N div 2) ET (N>1)
- 3) Fin Premier

Tableau de déclaration des objets

Objet	Type / Nature	Rôle		
i	Entier Long	Compteur d'entier impair		

Problème: (10 points)

Analyse du programme Principal:

Résultat = G

G = Associer (G, "Code.txt"),

Proc Resultat(M,G)

M = Proc FormationMatrice(F,M)

F = Associer (F, "Source.txt")

Tableau de déclarations des nouveaux types

Туре
Matrice = Tableau de 40 x 40 chaîne [6]

Tableau de déclarations des objets globaux

Objet	Type / Nature	Rôle		
F	Texte	Fichier texte à crypter		
G	Texte	Fichier crypté		
M	Matrice	Matrice utilisée pour crypter F		
Resultat	Procédure	Permet de générer le fichier crypté à partir de la matrice M		
FormationMatrice	Procédure	Permet de remplir la matrice M à partir du fichier à crypter		

Algorithme de la procédure FormationMatrice :

```
0) Def Proc FormationMatrice (Var F : Texte ; Var M : Matrice)
1) Pour L de 1 à 40 Faire
             Pour C de 1 à 40 Faire
                       M[L,C] \leftarrow "FFFFFF"
              FinPour
    FinPour
2) Ouvrir(F), L \leftarrow 0
    Tant que Non (Fin-Fichier(F)) Faire
             Lire_nl(F,Lig)
             L←L+1
              Si Long(Lig) mod 3 = 1 Alors Lig\leftarrowLig+"___"
                       Sinon Si Long(Lig) mod 3 = 2 Alors Lig\leftarrowLig+"\_"
              FinSi
              C←0
              Répéter
                       C←C+1
                       M[L,C] \leftarrow Fn \operatorname{Hexa}(\operatorname{Ord}(\operatorname{Lig}[1])) + Fn \operatorname{Hexa}(\operatorname{Ord}(\operatorname{Lig}[2])) + Fn \operatorname{Hexa}(\operatorname{Ord}(\operatorname{Lig}[3]))
                       Efface (Lig, 1, 3)
              Jusqu'à Long (Lig)=0
    FinTantque
```

3) Fermer(F)

- 4) Fin FormationMatrice

Tableau de Déclarations des Objets Locaux

Objet	Type / Nature	Rôle
L	Octet	Compteur de lignes
С	Octet	Compteur de colonnes
Lig	Chaîne de caractères	Contient une ligne du fichier à crypter
Hexa	Fonction	Calculer l'équivalent hexadécimal d'un entier de deux chiffres

Algorithme de la fonction Hexa:

- 0) Def Fn Hexa(k: Octet): Chaîne 1) a ← k div 16 2) b ← k mod 16 3) Si a < 10 Alors Cha \leftarrow Chr (ORD ("0") + a) Sinon Cha \leftarrow Chr (ORD ("A") + a - 10) FinSi 4) Si b < 10 Alors Chb \leftarrow Chr (ORD ("0") + b) Sinon Chb \leftarrow Chr (ORD ("A") + b - 10) FinSi 5) Hexa ←Cha + Chb
- 6) Fin Hexa

Tableau de déclarations des objets locaux

Objet	Type / Nature	Rôle
a	Octet	Quotient de la division euclidienne d'un entier k Par 16
b	Octet	Reste de la division euclidienne d'un entier k Par 16
Cha	Caractère	Equivalent hexadécimal de a
Chb	Caractère	Equivalent hexadécimal de b

Algorithme de la procédure Résultat :

```
    Def Proc Résultat (M : Matrice ; Var G : Texte)
    Recréer(G)
        Pour C de 1 à 40 Faire
        Lig←""
        Pour L de 1 à 40 Faire
        Lig←Lig+M[L,C]
        FinPour
        Ecrire_nl(G,Lig)
        FinPour
```

Fermer(G)

3) Fin Résultat

Tableau de déclarations des objets locaux

Objet	Type / Nature	Rôle
L	Octet	Compteur de lignes
С	Octet	Compteur de colonnes
Lig	Chaine de caractères	Contient la concaténation du contenu d'une colonne