REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION SESSION PRINCIPALE EXAMEN DU BACCALAURÉAT
SESSION DE JUIN 2009

SECTION:

SCIENCES EXPERIMENTALES

EPREUVE:

SCIENCES DE LA VIE ET DE LA TERRE

DURÉE: 3 heures

COEF.: 4

PREMIERE PARTIE: (8 points)

I- QCM: (4 points)

Pour chacun des items suivants (de 1 à 8), il peut y avoir une ou deux réponses correctes. Reportez sur votre copie le numéro de chaque item et indiquez dans chaque cas la (ou les) lettre(s) correspondant à la (ou aux) réponse(s) exacte(s).

N.B : Toute réponse fausse annule la note attribuée à l'item.

1) L'ovocyte II et le premier globule polaire ont en commun :

- a) les 2 cellules comportent n chromosomes
- b) les 2 cellules comportent 2 n chromosomes
- c) les 2 cellules sont issues de la division réductionnelle
- d) les 2 cellules sont issues de la division équationnelle

La phase postovulatoire (ou phase lutéinique ou lutéale) d'un cycle sexuel normal chez la femme est caractérisée par :

- a) le développement du corps jaune
- b) la maturation d'un follicule mûr
- c) une production abondante de l'hormone folliculostimulante (FSH)
- d) une production abondante de progestérone

3) Le rôle du placenta consiste à :

- a) sécréter la HCG (hormone gonadotrophique chorionique)
- b) sécréter l'hormone lutéinisante (LH)
- c) assurer les échanges nutritifs entre la mère et le fœtus
- d) empêcher le passage de tous les anticorps maternels au fœtus

4) Le développement maximal de l'endomètre (muqueuse utérine) est observé au cours de la phase :

- a) ovulatoire
- b) menstruelle
- c) prémenstruelle
- d) postmenstruelle

5) Le taux de l'hormone lutéinisante (LH) se maintient à un taux constant et élevé chez une femme :

- a) enceinte
- b) ménopausée ou ovariectomisée
- c) à cycle sexuel normal
- d) à cycle sexuel sous pilule combinée

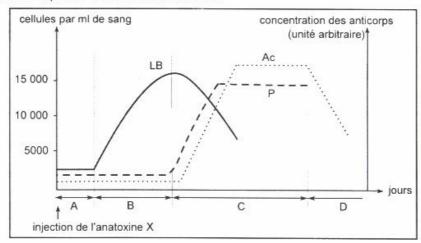
6) Les fuseaux neuromusculaires sont des récepteurs sensoriels qui :

- a) interviennent dans le réflexe myotatique
- b) interviennent dans le réflexe cardiomodérateur
- c) sont sensibles à la variation de la pression artérielle
- d) sont sensibles à l'étirement du muscle qui les renferme

- 7) Dans la spermatogenèse, la réduction du nombre de chromosomes des cellules germinales se produit au cours de la phase :
 - a) de multiplication
 - b) de différenciation
 - c) d'accroissement
 - d) de maturation
- 8) Dans le cas d'une cellule germinale à 2 n = 46 chromosomes, le nombre de types de gamètes obtenus par brassage interchromosomique est :
 - a) 2⁴⁶
 - b) 2²³
 - c) 23²
 - d) 46²

II - Neurophysiologie (4 points)

La propagation du message nerveux le long de la fibre nerveuse et sa transmission à travers les synapses se font dans un seul sens.


- 1) Expliquez, schéma à l'appui, le mécanisme de la propagation unidirectionnelle du message nerveux le long d'une fibre nerveuse myélinisée.
- 2) Citez, dans l'ordre chronologique, les événements qui se produisent au cours de la transmission synaptique au niveau d'une synapse neuroneuronique excitatrice.

DEUXIEME PARTIE (12 points)

I – Immunité : (6 points)

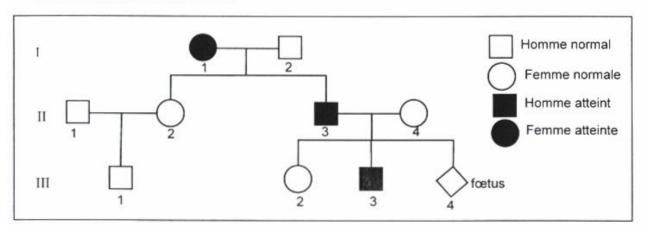
Afin de préciser certains aspects du déroulement de la réponse immunitaire spécifique, on réalise les expériences suivantes :

 Dans les jours qui suivent l'injection d'une toxine X atténuée (anatoxine X) à un animal, on compte le nombre des lymphocytes B (LB) et des plasmocytes (P) par millilitre de sang et on fait le dosage des anticorps anti-toxine X libres (Ac) dans le sang de cet animal. Le document 1 représente les résultats obtenus.

Document 1

- a) Identifiez, en le justifiant, la nature de la réponse immunitaire représentée par le document 1.
- Expliquez, en utilisant vos connaissances, l'évolution quantitative des éléments représentés par les graphes du document 1.
- c) Identifiez chacune des phases A, B, C et D de la réponse immunitaire.

2) Afin de préciser les conditions nécessaires à la production des anticorps anti-toxine X (Ac), on injecte de l'anatoxine X à trois souris de même souche : une souris 1 normale, une souris 2 thymectomisée (ayant subi l'ablation du thymus) et une souris 3 thymectomisée et à laquelle on a injecté des lymphocytes T de la souris 1. Après 15 jours, on prélève le sérum de chacune des trois souris et on le place en présence de la toxine X. Le document 2 représente les résultats obtenus.


	Expérience 1	Expérience 2	Expérience 3	
Expériences	Sérum de la souris 1 + toxine X	Sérum de la souris 2 + toxine X	Sérum de la souris 3 +toxine X	
Résultats	Formation d'un complexe immun	Pas de formation d'un complexe immun	Formation d'un complexe immun	

Document 2

- a- Analysez les données expérimentales précédentes en vue d'expliquer les résultats obtenus.
- b- Proposez une expérience qui montre la nécessité des macrophages dans la production des anticorps anti-toxine X (Ac).

II - Génétique humaine : (6 points)

Le document 3 représente l'arbre généalogique d'une famille dont certains membres sont atteints d'une maladie héréditaire.

Document 3

- 1- Exploitez les données du document 3 pour discuter chacune des hypothèses suivantes :
 - Hypothèse 1 : l'allèle responsable de la maladie est récessif et porté par un autosome.
 - Hypothèse 2 : l'allèle responsable de la maladie est dominant et porté par un autosome.
 - Hypothèse 3 : l'allèle responsable de la maladie est récessif et porté par le chromosome sexuel X.
 - Hypothèse 4 : l'allèle responsable de la maladie est dominant et porté par le chromosome sexuel X.

2- Pour vérifier les hypothèses envisagées dans la première question, on fait, par la technique de l'électrophorèse, l'analyse des fragments d'ADN correspondant aux allèles A₁ et A₂ du gène impliqué dans la maladie, des deux individus I₁ et III₂.
Les résultats sont représentés par le document 4.

Individu Fragment d'ADN	I,	1112
Α,		_
A_2	_	_

Document 4

A partir de l'exploitation des documents 3 et 4 :

- a identifiez, parmi les allèles A1 et A2, l'allèle normal et l'allèle responsable de la maladie.
- b précisez, parmi les hypothèses envisagées dans la première question, les hypothèses à retenir. Justifiez votre réponse.
- 3- La femme II₄ est inquiète quant à l'état de santé de son futur enfant III₄ (fœtus). Pour se rassurer, elle consulte son médecin. Celui-ci établit le caryotype du fœtus ainsi que le nombre d'allèles correspondant au gène étudié chez la femme II₄ et chez son fœtus. Les résultats sont représentés par les documents 5 et 6.

XX	XX	KK 3	KK KK
XX	κ̈́χ	XX	XX XX
XX	XX	XX 13	XX 44 15
KK	KB	18	XX XX
XX 19	XX 20	21	22

Individu Fragment d'ADN	Femme II ₄	Fœtus
A ₁	1	0
Az	1	2

Document 5 : caryotype du fœtus

Document 6 : nombre d'allèles chez la femme Il₄ et son fœtus

À partir de l'analyse des documents 5 et 6 :

- précisez laquelle des hypothèses précédentes est à retenir.
- précisez le phénotype du fœtus.
- 4- Ecrivez les génotypes des individus 12 et 112.