REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT -- SESSION DE JUIN 2011

SECTION: SCIENCES EXPERIMENTALES

EPREUVE: SCIENCES PHYSIQUES DUREE: 3 h

SESSION DE CONTRÔLE

COEFFICIENT: 4

Le sujet comporte quatre pages numérotées de 1/4 à 4/4

CHIMIE (7 points)

EXERCICE 1 (3 points)

« Etude d'un document scientifique » Modes de préparation du méthanol

En 1923, le chimiste allemand Mattias Pier a développé un procédé selon lequel, en présence de chromate de zinc, un mélange de dihydrogène, de monoxyde et de dioxyde de carbone, porté à une température de l'ordre de **400°C** et à une pression de **30** à **100 MPa** (de 300 à 1000 atmosphères) est transformé en méthanol. La production moderne du même alcool est le plus souvent réalisée à partir du méthane, comme suit :

- A des pressions modérées de 1 à 2 MPa, à une température de l'ordre de 850°C et en présence de nickel, le méthane réagit avec la vapeur d'eau selon l'équation :

$$CH_4 + H_2O \rightarrow CO + 3 H_2$$
 (1)

- La chaleur nécessaire à la réaction (1) est fournie par la réaction d'équation :

$$2 CH_4 + O_2 \rightarrow 2 CO + 4 H_2 (2)$$

- Le rapport entre les quantités de CO et de H₂ nécessaires à la synthèse du méthanol est ajusté par la réaction d'équation : CO + H₂O → CO₂ + H₂ (3)
- En présence d'un mélange de cuivre, d'oxyde de zinc et d'alumine, à une température de **250°C** et sous une pression de **5** à **10 MPa**, le méthanol est obtenu selon l'équation :

$$CO + 2 H_2 \rightarrow CH_3OH$$
 (4)

D'après WWW.Wikipedia.org/wiki/methanol

Questions

- 1. Relever du texte :
 - a) le nom de la substance qui a joué le rôle de catalyseur dans la synthèse du méthanol, réalisée en 1923,
 - **b)** les noms des substances qui ont joué le même rôle dans le procédé moderne de préparation du méthanol tout en précisant l'étape correspondante,
 - c) un autre facteur cinétique intervenu dans les réactions de production du méthanol.
- 2. Montrer, dans chacun des cas de catalyse figurant dans le texte, s'il s'agit d'une catalyse homogène ou bien hétérogène.
- 3. Montrer à partir du texte qu'un catalyseur est sélectif.

EXERCICE 2 (4 points)

Toutes les solutions considérées dans l'exercice sont prises à 25° C, température à laquelle le produit ionique de l'eau est $K_e = 10^{-14}$.

On prélève séparément un volume $V_0 = 5$ mL de deux solutions aqueuses (S_1) d'une base (B_2) , de même pH = 11,1 et on complète dans chaque cas avec de l'eau distillée jusqu'à 100 mL. On obtient deux nouvelles solutions (S'_1) et (S'_2) de pH respectifs 9,8 et 10,4.

- 1. Donner le nom de l'opération réalisée pour passer de (S₁) et (S₂) à (S'₁) et (S'₂) et préciser la verrerie qu'on doit utiliser pour réaliser le travail avec précision.
- **2.** a) Calculer le nombre \mathbf{n}_{o} de moles d'ions hydroxyde contenus dans le volume \mathbf{V}_{o} prélevé.
 - b) Calculer les nombres n_1 et n_2 de moles d'ions OH^- contenus dans les solutions (S'_1) et (S'_2) et les comparer à n_0 .
 - c) En déduire que la base (B₁) est forte tandis que (B₂) est faible.
- 3. Sachant que la base (B_2) est l'ammoniac NH_3 et que la concentration de (S_2) est $C_2 = 0,1$ mol. L^{-1} :
 - a) écrire l'équation de la réaction de l'ammoniac avec l'eau,

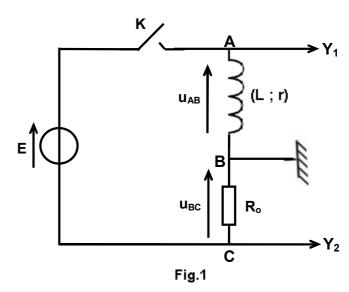
b) - montrer que le taux d'avancement final de la réaction d'ionisation de l'ammoniac dans l'eau est :

$$\tau_{\rm f} = \frac{10^{\frac{\rm at}{100} \cdot \frac{\rm at}{1000}}}{\rm C_2},$$

- vérifier par le calcul de τ_f que la base (B_2) est faiblement ionisée dans l'eau.
- c) donner l'expression de la constante d'acidité K_a du couple dont l'ammoniac est la forme basique,
 - établir la relation $[H_3O^+]_{S_a} = K_a \tau_f$,
 - en déduire la valeur du **pK**_a du couple acide-base dont l'ammoniac est la forme basique.
- **4. a)** Calculer le taux d'avancement final τ'_f de la réaction de l'ammoniac avec l'eau pour la solution (S'_2).
 - b) En déduire l'effet de la dilution sur l'ionisation de l'ammoniac.

PHYSIQUE (13 points) EXERCICE 1 (4 points)

On associe en série une bobine d'inductance L et de résistance $r=10~\Omega$, un générateur de force électromotrice (fem) E, de résistance interne nulle et de masse flottante, un résistor de résistance R_o et un interrupteur K comme il est indiqué dans la figure 1. Afin d'enregistrer simultanément l'évolution temporelle des tensions $u_{AB}(t)$ et $u_{BC}(t)$, on relie les entrées Y_1 et Y_2 d'un oscilloscope à mémoire respectivement aux points A et C du circuit tandis que sa masse est reliée au point B (Fig.1) et on appuie sur le bouton inversion de la voie Y_2 de l'oscilloscope. A l'instant t=0, on



ferme le circuit à l'aide de l'interrupteur K. L'oscilloscope enregistre les courbes \mathscr{C}_1 et \mathscr{C}_2 de la figure 2.

- Justifier l'inversion faite sur la voie
 Y₂ de l'oscilloscope.
- 2. Montrer que l'intensité i du courant qui circule dans le circuit est régie par l'équation différentielle :

$$\frac{di}{dt} + \frac{1}{\tau}i = \frac{E}{L} \text{, avec } \tau = \frac{L}{R} \text{ et}$$

$$R = R_o + r.$$

- **3. a)** Vérifier que l'intensité **i** du courant s'écrit sous la forme :
 - $i(t) = K(1 e^{-\frac{t}{\tau}})$, où K est une constante dont on déterminera l'expression en fonction de E et de R.

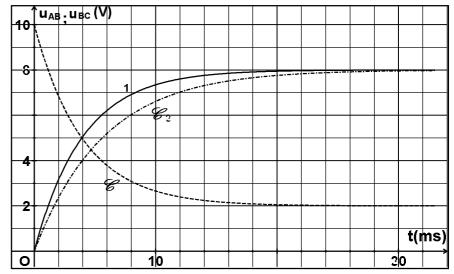


Fig.2

- b) En déduire l'expression de chacune des tensions $u_{AB}(t)$ et $u_{BC}(t)$.
- c) Identifier parmi \mathcal{C}_1 et \mathcal{C}_2 de la figure 2, le chronogramme de $u_{BC}(t)$.
- **4.** A l'aide des courbes \mathscr{C}_1 et \mathscr{C}_2 de la figure **2**, déterminer la valeur de :
 - a) la fem E du générateur,
 - b) l'intensité l_o du courant qui s'établit dans le circuit en régime permanent,
 - c) la résistance R_o,
 - d) la constante de temps τ et en déduire la valeur de l'inductance L.
- **5.** Dans le circuit précédent, on modifie l'une des grandeurs caractéristiques du circuit (L ou bien R_o). Le nouveau chronogramme de la tension u_{BC} est la courbe \mathscr{C}_3 de la figure **2**. Identifier la grandeur dont la valeur a été modifiée et comparer sa nouvelle valeur à sa valeur initiale.

EXERCICE 2 (4,5 points)

Un pendule élastique est constitué d'un solide (S) de masse m et d'un ressort (R) de raideur k = 40 N.m⁻¹ et de masse négligeable devant celle de (S).

I. Le solide (S), libre de se mouvoir sur un banc à coussin d'air horizontal, est écarté de sa position de repos

dans la direction d'un axe (O, i) parallèle au banc, puis libéré sans vitesse initiale à un instant to qui sera pris comme origine des temps $(t_o = 0)$. Pour étudier les oscillations du pendule, on repère au cours du temps, la position du centre d'inertie G du solide (S) dans le repère (O, i) (Fig.3).

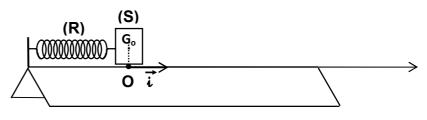


Fig.3

- 1. a) En désignant par x l'abscisse de G et par v, sa vitesse à un instant t donné, exprimer l'énergie mécanique E du pendule élastique en fonction de m, k, v et x.
 - b) En admettant que E reste constante au cours des oscillations, établir en x, l'équation différentielle des oscillations de G.
- 2. Un système approprié d'acquisition des données permet d'obtenir les courbes 1 et 2 de la figure 4.

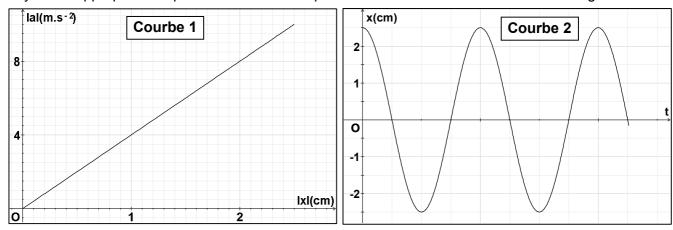


Fig.4

La courbe 1 traduit l'évolution de la valeur absolue de l'accélération a de G en fonction de la valeur absolue de son élongation x : la courbe 2 représente l'évolution de x au cours du temps t.

- a) Montrer que la forme droite de la courbe 1 vérifie l'équation différentielle établie dans 1.b.
- b) En déduire la valeur de :
 - la pulsation des oscillations,
 - la masse m du solide (S).
- c) Déterminer :
 - les expressions de x(t) et de v(t),
 - le sens dans lequel le solide (S) a été écarté initialement.
- II. Le solide (S) est maintenant soumis, au cours de ses oscillations, à une force excitatrice $\vec{F} = (1, 2 \sin 18 t) \cdot \vec{i}$ et à une force de frottement $\vec{f} = -h \vec{v}$, avec $h = 0.8 \text{ N.s.m}^{-1}$.
 - 1. Sachant que pour un dipôle RLC série soumis à une tension alternative sinusoïdale u(t) = U_msinωt, l'équation différentielle reliant la charge du condensateur q à sa dérivée première et à sa dérivée seconde

est :
$$L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C} = u$$
 et sa solution est de la forme : $q = Q_m \sin(\omega t + \phi_q)$,

avec
$$\mathbf{Q}_{m} = \frac{\mathbf{U}_{m}}{\sqrt{\mathbf{R}^{2}\omega^{2} + (\mathbf{L}\omega^{2} - \frac{1}{C})^{2}}}$$
: charge maximale et ϕ_{q} , phase initiale de \mathbf{q} telle que $\mathbf{tg}\,\phi_{q} = \frac{\mathbf{R}\,\omega}{\mathbf{L}\omega^{2} - \frac{1}{C}}$.

- a) En précisant l'analogie utilisée, écrire :
 - l'équation différentielle reliant l'abscisse x de G à sa dérivée première et à sa dérivée seconde pour l'oscillateur mécanique,

- l'expression de $\mathbf{x}(\mathbf{t})$ en régime permanent, en précisant son amplitude \mathbf{X}_{m} et sa phase initiale $\mathbf{\varphi}_{\mathbf{x}}$.
- b) En déduire l'expression de la vitesse v(t) de G.
- 2. On modifie la pulsation de l'excitateur. Pour une valeur ω_1 de celle-ci, l'amplitude des oscillations devient maximale.
 - a) Donner le nom du phénomène dont l'oscillateur est le siège à la pulsation ω₁.
 - b) Dans le cas d'un circuit **RLC série**, un phénomène analogue peut être observé à une valeur ω_r de la pulsation de la tension excitatrice $\mathbf{u}(\mathbf{t})$.
 - Etablir l'expression de ω_r en fonction de la pulsation propre ω_o du circuit, de la résistance R et de l'inductance L.
 - c) En déduire par analogie, l'expression de ω_1 en fonction de h, m et ω_0 , la pulsation propre du pendule élastique.
 - Calculer la valeur de ω₁.
 - d) Calculer la puissance mécanique moyenne du pendule oscillant à la pulsation ω₁.

EXERCICE 3 (4,5 points)

Une corde élastique de longueur L = 0,6 m tendue horizontalement est attachée par son extrémité S au bout d'une lame vibrante qui lui communique des vibrations sinusoïdales transversales, d'amplitude a = 4 mm et de fréquence N (voir figure S). Une onde progressive transversale de même amplitude S0 se propage le long de la corde à partir de S0 avec la célérité S0 une onde progressive transversale de même amplitude S1 se propage le long de la corde à partir de S3 avec la célérité S4 une corde de S5.

On suppose qu'il n'y a ni amortissement ni réflexion des ondes.

Le mouvement de S débute à l'instant t = 0 et admet comme équation horaire : $y_s(t) = 4.10^{-3} \sin(200\pi t + \pi)$.



- 1. Déterminer la valeur de la fréquence N, puis celle de la longueur d'onde λ .
- 2. a) Soit M un point de la corde d'abscisse x = SM dans le repère $(S, \vec{\iota})$. Etablir l'équation horaire du mouvement de ce point.
 - b) Montrer que les deux points A et B de la corde d'abscisses respectives $x_A = 2,5$ cm et $x_B = 22,5$ cm vibrent en phase.
- 3. L'aspect de la corde à un instant t₁ est représenté sur la figure 6.

- a) Déterminer graphiquement la valeur de t₁.
- b) Déterminer les positions des points N_i de la corde ayant, à l'instant t_1 , l'élongation $y_{N_i} = \frac{a}{2}$.
- c) Parmi ces points, déduire celui qui vibre en phase avec le point N_1 d'abscisse $x_1 = 3,33$ cm.