SCIENCES NATURELLES

Session principale (juin 12)

Première partie (10 points)

Sujet n°1 au choix

A- QCM

Commentaire:

Le QCM ou questionnaire à choix multiples comporte des items portant sur une grande partie du programme de SVT. La tâche du candidat consiste à relever sur sa copie les réponses correctes.

- Evitez de relever une réponse pour laquelle vous avez un doute car toute réponse fausse annule la note attribuée à l'item
- Eviter de recopier les questions et les propositions

1	2	3	4	5	6
a, d	С	a, c	a, b	b, d	a

B- Commentaire:

Dans la comparaison, il faut mentionner les points communs et les différences.

	Critères de	Réflexe rotulien	Réflexe de retrait de la	
	comparaison		main	
Points communs	Nature du réflexe	réflexe inné		
	Centre nerveux	moelle épinière (ou centre médullaire)		
	Mécanisme de			
	coordination des muscles	l'innervation réciproque		
oints	antagonistes			
P	Organe effecteur	muscle squelettique		
Différences			chaleur (ou stimulus	
	Nature du stimulus	étirement ou stimulus	thermique ou variation de la	
		mécanique	température)	
	Type de récepteurs	mécanorécepteur	thermorécepteur	
		(FNM)		
	Emplacement des	dans le muscle lui	dans la peau	
	récepteurs	même		
	Type de circuit nerveux	circuit monosynaptique	circuit polysynaptique	
	activé			
	Nature du mouvement	extension	flexion	
	effectué			
	Rôle du réflexe	Equilibration ou posture	Protection ou défense	

Sujet au choix n°2

A- QCM

1	2	3	4	5
d	С	a, d	a	c

B-

1- Au cours de la contraction musculaire, la molécule d'ATP est utilisée comme suit :

- l'ATP se fixe sur la myosine
- le complexe ATP/myosine se fixe sur les sites de l'actine démasqués par l'action du Ca⁺⁺ libéré
- activation de l'action ATPasique de la myosine
- hydrolyse de l'ATP selon la réaction suivante: ATP + H2O → ADP + Pi + E
- une partie de l'énergie libérée provoque le pivotement des têtes de myosine entraînant le glissement des filaments d'actine

NB: la réponse peut être donnée sous forme de schémas commentés

- 2- les voies de régénération de l'ATP :
 - * voies rapides : ADP + PC → ATP + créatine + chaleur initiale

$$ADP + ADP \rightarrow ATP + AMP$$

*voies lentes : glycolyse : glucose-P → 2 acides pyruviques + 2 ATP

- En présence d'O₂: respiration cellulaire : acide pyruvique + O₂ \rightarrow CO₂ + H₂O + ATP + chaleur
- En cas d'insuffisance en O₂: fermentation : acide pyruvique → acide lactique + ATP

Deuxième partie : Partie obligatoire (10 points)

A-

1-

Commentaire:

Pour analyser une courbe, il faut d'abord la découper en moments essentiels. Ainsi pour la courbe X, on peut distinguer trois temps : à t_0 (ingestion de 1,5l d'eau), à t_2 (entre 1,5 et 2,5s) et à t_3 après 2,5s N'oubliez pas de noter les minima et les maxima .

• Analyse de la courbe X :

L'ingestion de 1.5L d'eau pure au temps t_0 augmente la diurèse qui atteint 400 ml puis reste constante durant environ une heure. Cette diurèse diminue par la suite jusqu' à la valeur voisine de 210 mL.h⁻¹.

• Analyse de la courbe Y :

L'injection d'une solution hypertonique de NaCl à l'animal ayant ingéré 1.5 L d'eau pure réduit la diurèse. Le volume urinaire atteint une valeur faible de l'ordre de 110 mL.h⁻¹; puis la courbe montre une diminution de la diurèse de l'ordre de 60 mL.h⁻¹.

Les facteurs qui influencent la diurèse sont le volume et la pression osmotique du plasma

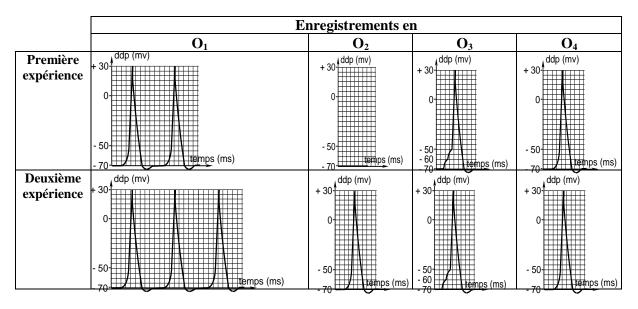
- **2-** L'injection d'extraits hypophysaires chez un animal sain ayant ingéré 1.5 L d'eau pure réduit la diurèse. Le volume urinaire atteint une valeur faible de l'ordre de 110 mL.h⁻¹; puis la courbe montre une diminution de la diurèse de l'ordre de 60 mL.h⁻¹.
- => Cette hormone est l'ADH : hormone antidiurétique qui active la réabsorption d'eau au niveau du tube collecteur du néphron.
- **3-** Les courbes Y et Z sont identiques bien que les conditions expérimentales sont différentes. En effet, le NaCl présent dans le milieu intérieur fait augmenter la pression osmotique. Cette hypertonie déclenche la sécrétion d'ADH qui augmente la réabsorption tubulaire d'eau afin d'établir l'équilibre hydrominéral du milieu intérieur.

B-

Commentaire:

Il est recommandé d'observer attentivement le dispositif expérimental (document2) ainsi que les enregistrements au niveau de chacun des oscilloscopes O_1 , O_2 , O_3 et O_4 .

1- Identification des tracés


- Le tracé a est une légère dépolarisation d'amplitude 10 mv qui rapproche le neurone postsynaptique de la valeur seuil (-50mv) : c'est un PPSE
- L'enregistrement b est une hyperpolarisation d'amplitude 8 mv faisant éloigner le neurone postsynaptique de la valeur seuil : c'est un PPSI
- **2-** Nature des synapses :
 - La synapse A-M: synapse excitatrice.
 - La synapse B-M: synapse inhibitrice.
- **3-** Quelque soit la stimulation efficace I₁ ou I₂ portée sur la terminaison nerveuse A ou B, on enregistre au niveau du cône axonique (O₃) un PPS qui se propage en diminuant d'amplitude jusqu'à atteindre la valeur du potentiel de repos enregistré au niveau de O₄.

4-

- a- *une seule stimulation $I_1 => PPSE$ d'amplitude 10 mv est incapable d'engendrer un PA au niveau du cône axonique. D'où l'absence de PA au niveau de O_4 .
 - * deux stimulations I₁ efficaces, successives et rapprochées au niveau de A par sommation temporelle => Le PPSE global d'amplitude 20 mv atteint le seuil et déclenche la naissance d'un PA au niveau du cône axonique du neurone M. Ce PA se propage jusqu' en O₄.
- **b** On stimule simultanément les neurones A et B de la manière suivante :
 - 3 stimulations efficaces et rapprochées de A
 - une seule stimulation efficace de B

Résultat : le PPS global sera d'amplitude $+30 - 8 = 22 \text{ mv} => \text{ dépolarisation obtenue par sommation spatio-temporelle de deux PPSE et d'un PPSI permettant l'atteinte de la valeur seuil <math>-70+22 = -48 \text{ mV}$ => naissance d'un PA au niveau de O₃ qui se propage jusqu'à O₄.

c- Enregistrements:

5- Le neurone postsynaptique M a la capacité d'intégrer les informations qui lui parviennent des neurones présynaptiques par sommation temporelle et spatiale des PPS. Si la somme algébrique des PPS obtenue atteint le seuil, il y a naissance et propagation d'un message nerveux. Dans le cas contraire, aucun message ne prend naissance.