

SESSION DE JUIN 2012

Epreuve: SCIENCES PHYSIQUES

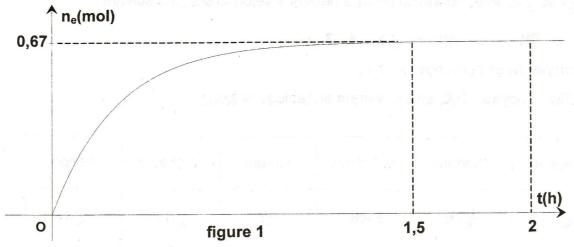
Durée: 2h

Coefficient: 1

SECTION: SPORT

SESSION PRINCIPALE

Le sujet comporte 4 pages numérotées de 1/4 à 4/4


CHIMIE

Exercice 1 (4 points)

Dans des conditions appropriées, on mélange 1 mol d'acide éthanoïque de formule semi-développée : $CH_3 - C - OH$ et 1 mol d'un alcool (A) de formule brute C_2H_6O pour O

obtenir un ester (E) et de l'eau.

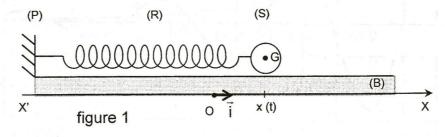
On suit l'évolution du nombre de moles d'ester formé (n_e) au cours du temps, les mesures effectuées ont permis de tracer la courbe de la figure 1 :

- 1) a- Ecrire la formule semi-développée de l'alcool (A). Le nommer.
 - b- Ecrire, en formules semi-développées, l'équation chimique de la réaction qui se produit entre l'acide éthanoïque et l'alcool (A).
 - c- Donner le nom de cette réaction.
- 2) Extraire, à partir de la courbe de la figure 1 :
 - les nombres de mole d'ester formé aux instants $t_1 = 1,5$ heures et $t_2 = 2$ heures ;
 - deux caractères de la réaction considérée. Justifier la réponse.
- 3) Préciser, en justifiant la réponse, lequel des trois mélanges, sous- indiqués, est obtenu réellement lorsque la composition du mélange ne varie plus :
 - mélange 1: l'ester(E), l'alcool (A) et l'acide éthanoïque ;
 - mélange 2: l'ester(E), l'eau, l'alcool (A) et l'acide éthanoïque ;
 - mélange 3: l'ester(E), l'eau et l'alcool (A).

Exercice 2 (4 points)

On dispose de trois amines (A), (B) et (C) consignées dans le tableau suivant:

Amine	Nom de l'amine semi-développ		Formule brute
(A)	N,N-diméthylméthanamine (ou triméthylamine)		3 4 80
(B)	$b \geq 1$ (if $k = 3$ is submortial of standing		CH₅N
(C)		CH ₃ - NH-CH ₂ -CH ₃	ria


- 1) Reproduire, sur la copie à remettre, le tableau ci-dessus et le compléter.
- 2) Préciser, parmi les trois amines de ce tableau, les deux amines isomères. Justifier la réponse.
- 3) Identifier, par sa formule semi-développée, l'amine qui, par action sur l'acide nitreux (HNO₂), donne un N-nitrosamine et de l'eau. Justifier la réponse.
- 4) L'action de l'acide nitreux sur l'une des deux autres amines donne, entre autres produits, un alcool.
 - a- Identifier, par son nom, cette amine. Justifier la réponse.
 - b- Ecrire, en formules semi-développées, l'équation chimique de cette réaction.

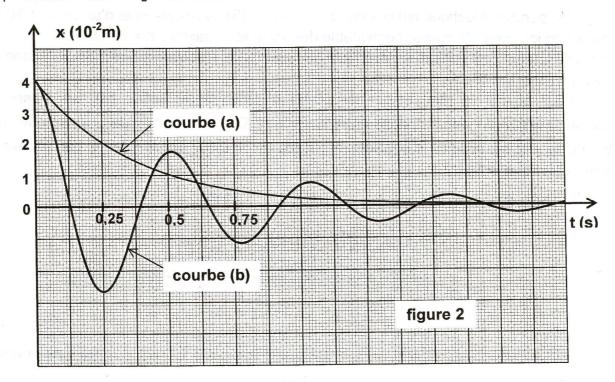
PHYSIQUE

Exercice 1 (6,75 points)

Un pendule élastique est constitué d'un solide (S) de masse m et d'un ressort (R) à spires non jointives, de masse négligeable devant m et de raideur K = 50 N.m⁻¹. Le solide (S) est lié à l'une des extrémités du ressort (R). L'autre extrémité de ce ressort est fixée à un support (P).

Pour étudier le mouvement du centre d'inertie G du solide (S), on repère son élongation x(t), à un instant t, dans un repère (O, \vec{i}) ; O est la position de G lorsque le solide (S) passe par sa position d'équilibre et \vec{i} est un vecteur unitaire porté par un axe x'x comme l'indique la figure 1.

- I- Le solide (S) peut osciller sur un banc à coussin d'air (B) en absence de tout type de frottement. On l'écarte d'une distance d à partir de sa position d'équilibre et on le lâche sans vitesse initiale à l'instant t_0 = 0, pris comme origine des temps.
- 1) a- Montrer que le mouvement de G est régit par l'équation différentielle :


$$\frac{d^2x(t)}{dt^2} + \frac{K}{m}x(t) = 0.$$

En déduire la nature du mouvement du solide (S).

b- L'élongation x(t) de G vérifie, à chaque instant, la loi horaire x(t) = $410^{-2} \sin(4\pi t + \frac{\pi}{2})$, où x (t) est exprimée en mètre.

Préciser les valeurs :

- de l'élongation maximale X_m des oscillations de G;
- de la période propre T₀ des oscillations de G;
- de la phase initiale φ_0 du mouvement de (S).
- 2) Déduire la masse m du solide (S). On prendra $\pi^2 = 10$.
- 3) Déterminer la valeur V_m de la vitesse maximale de G lorsque le solide (S) passe par sa position d'équilibre.
- II- Le solide (S) est maintenant soumis à une force de frottement visqueux $\vec{f} = -h \vec{v}$ ou h est une constante positive et \vec{v} est le vecteur vitesse instantané de G. Un dispositif approprié permet d'obtenir les courbes (a) et (b) de la figure 2 traduisant l'évolution de l'élongation x (t) de G au cours du temps respectivement, pour $h = h_1 = 4 \text{ N.s.m}^{-1}$ et $h = h_2 = 12 \text{ N.s.m}^{-1}$.

- 1) a- Parmi les deux courbes (a) et (b), indiquer celle qui correspond au régime pseudo-périodique. Justifier la réponse.
 - b- Déterminer, à partir de cette courbe, la pseudo-période T des oscillations de G.
- 2) a- Nommer le régime correspondant à l'autre courbe, sachant que le régime critique est obtenu pour $h = h_c = 8 \text{ N.s.m}^{-1}$.
- b- En justifiant la réponse, préciser, parmi les courbes (a) et (b) celle qui correspond au frottement visqueux le plus important.

Exercice 2 (5,25 points):

- I- Le noyau d'Hélium ${}_{2}^{4}$ He peut être obtenu à partir de la réaction nucléaire schématisée par l'équation suivante : ${}_{1}^{2}$ H + ${}_{1}^{3}$ H \rightarrow ${}_{2}^{4}$ He + ${}_{2}^{A}$ X
- 1) Préciser si cette réaction est une fission ou une fusion.
- 2) Identifier la particule AX tout en précisant les lois utilisées pour déterminer A et Z.
- II- sous l'impact d'un neutron lent ${}_0^1$ n, un noyau d'Uranium ${}_{92}^{235}$ U se scinde en deux noyaux ${}_{53}^{138}$ I et ${}_{2}^{A_1}$ X₁ avec libération de trois neutrons selon le schéma suivant :

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{53}^{138}I + {}_{Z_{1}}^{A_{1}}X_{1} + {}_{3}{}_{0}^{1}n$$

1) a- Déterminer A_1 et Z_1 du noyau $A_1 \atop Z_1$ X_1 .

b- Identifier le noyau $^{A_1}_{Z_1}X_1$ en se référant au tableau suivant :

Nom du noyau	Thorium	Rubidium	Yttrium	Strontium	Xénon
Symbole	²³⁰ Th	93 37 Rb	95 Y	94 38	¹⁴⁰ Xe

- c- Donner le nom de cette réaction nucléaire et préciser si elle est spontanée ou provoquée.
- 2) Calculer, en MeV puis en Joules, l'énergie E libérée, par un seul noyau d'uranium, au cours de cette réaction nucléaire.

On donne:

1u = 931,5 MeV.c⁻²
1 MeV = 1,6.10⁻¹³ J
masse d'un neutron : m (
$$_0^1$$
n) = 1,00866 u
masse d'un noyau d'Uranium 235 : m ($_{92}^{235}$ U) = 235,04392 u
masse d'un noyau d'Iode 138 : m ($_{53}^{138}$ I) = 137,92237 u
masse d'un noyau d'Yttrium : m ($_{39}^{95}$ Y) = 94,91281 u