SESSION 2016	Session principale	
EXAMEN DU BACCALAURÉAT	Durée : 2h	Coefficient : 1
****	Section : Sport	
RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION	Épreuve : Sciences physiques	

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

CHIMIE (8 points)

Exercice 1 (4,5 points)

1) a- Reproduire et compléter, sur la copie à remettre, le tableau suivant :

Composé	A	В	C
Formule brute		C ₂ H ₄ O ₂	
Formule semi-développée	СН3-ОН	white this is a majority or	CH ₃ -C-O-CH ₃
Fonction chimique		Acide carboxylique	

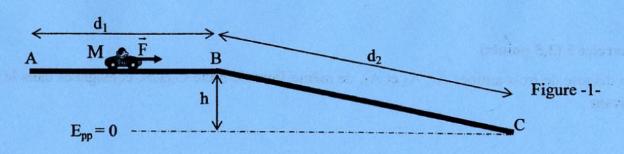
- b- Donner le nom de chacun des composés A et B.
- 2) Le composé C est obtenu suite à la réaction entre A et B.
 - a- Nommer cette réaction.
 - b- Citer deux caractères de cette réaction.
 - c- Ecrire l'équation de cette réaction.
- 3) Le composé C réagit avec une solution aqueuse de soude NaOH pour donner A et un composé D.
 - a- Donner le nom de cette réaction.
 - b- Identifier, par sa formule semi-développée le composé D.

Exercice 2 (3,5 points)

On dispose de trois amines A₁, A₂ et A₃, de même formule brute C₃H₉N, consignées dans le tableau suivant :

Amine	A_1	A _{2, 194}	A ₃	
Nom		propan -1- amine	A House and the second second	
Formule semi-développée	CH ₃ -NH-CH ₂ -CH ₃		CH ₃ -CH-CH ₃	

- 1) Reproduire et compléter, sur la copie à remettre, le tableau ci-dessus.
- 2) L'action de l'acide nitreux HO N = O sur l'amine A₁ donne une N-nitrosamine et de l'eau.
 - a- Préciser la classe de l'amine A1.
 - b- Ecrire, en utilisant les formules semi-développées, l'équation de la réaction qui se produit entre l'amine A₁ et l'acide nitreux.
- 3) L'action de l'acide nitreux sur l'amine A2 donne du diazote, de l'eau et un alcool E.
 - a- Ecrire l'équation de la réaction qui se produit entre l'amine A2 et l'acide nitreux.
 - b- Préciser le nom et la classe de l'alcool E.
- 4) Le chlorure d'acyle de formule semi-développée CH₃-C-Cl réagit avec l'amine A₃ pour donner un composé organique F et du chlorure d'hydrogène HCl.


Ecrire la formule semi-développée du composé F.

PHYSIQUE (12 points)

Exercice 1 (7 points)

Une automobile, de masse M = 1200 kg, roule sur une route ABC constituée de deux parcours comme l'indique la figure -1-.

- Le parcours AB est horizontal de longueur AB = d₁ = 500 m situé à une altitude h = 25 m par rapport au plan horizontal passant par le point C.
- Le parcours BC est incliné par rapport à l'horizontale, de longueur BC = d_2 = 825 m.

Page 2 sur 4

I- Mouvement de l'automobile sur le parcours AB

Le long du trajet AB, les frottements sont supposés négligeables et l'automobile est soumise à l'action d'une force constante \vec{F} de valeur $\|\vec{F}\| = 480$ N développée par son moteur.

Partant du point A, sans vitesse initiale, l'automobile atteint le point B avec une vitesse VB.

- 1) a- Enoncer le théorème de l'énergie cinétique.
 - b- En appliquant ce théorème à l'automobile entre A et B, établir l'expression de la vitesse $\| \overrightarrow{\nabla}_B \|$ au point B en fonction de $\| \overrightarrow{F} \|$, M et d₁.
 - c- Vérifier que $\|\vec{V}_B\| = 20 \text{ m.s}^{-1}$.
- 2) a- Etablir, en fonction de M, $\| \overline{g} \|$, h et V_B , l'expression de l'énergie mécanique E_1 du système {automobile, terre} au point B. On prendra le plan horizontal passant par C comme plan de référence de l'énergie potentielle de pesanteur ($E_{pp} = 0$).
 - c- Calculer E_1 . On donne $\|\vec{g}\| = 10 \text{ m.s}^{-2}$.

II- Mouvement de l'automobile sur le parcours BC

A partir du point B, le moteur ne développe aucune force. L'automobile aborde alors le parcours BC avec la vitesse \vec{V}_B précédente et atteint le point C avec une vitesse \vec{V}_C de valeur $\|\vec{V}_C\| = 30 \text{ m.s}^{-1}$.

- 1) Calculer l'énergie mécanique E2 du système {automobile, terre} au point C.
- 2) Comparer E₁ et E₂. Conclure.
- 3) En réalité, les frottements au cours du mouvement de l'automobile entre B et C ne sont plus négligeables. Leur action est équivalente à une force \vec{f} constante de valeur $\|\vec{f}\|$, qui s'oppose au mouvement. La nouvelle valeur de la vitesse de l'automobile, au point C, n'est que $\|\vec{V}_{C}\| = 25 \text{ m.s}^{-1}$.
 - a- Calculer la variation ΔE de l'énergie mécanique du système {automobile, terre} entre B et C.
 - b- Déduire la valeur $\|\vec{f}\|$ de la force de frottement.

Exercice 2 (5 points):

Le neptunium A_ZNp est radioactif. Il se désintègre en plutonium ${}^{239}_{94}Pu$ selon la réaction nucléaire modélisée par : A_ZNp \rightarrow ${}^{239}_{94}Pu$ + ${}^0_{-1}e$

 a- En précisant les lois de conservation utilisées, déterminer la valeur du nombre de masse A et celle du nombre de charge Z du neptunium.

- b- Expliquer l'origine de l'émission de l'électron 0 par le noyau de neptunium.
- 2) On dispose, à $t_0 = 0$ s, d'un échantillon de masse $m_0 = 12$ g de neptunium A_Z Np. Les masses de neptunium restantes aux instants $t_1 = 2,3$ jours, $t_2 = 4,6$ jours et $t_3 = 6,9$ jours sont respectivement m_1 , m_2 et m_3 .
 - a- Définir la période radioactive (ou demi-vie) d'un radioélément.
 - b- Sachant que la période radioactive du neptunium est T = 2,3 jours, reproduire et compléter, sur la copie à remettre, le tableau suivant :

Instant t _i	t ₀	t _l	t ₂	t ₃
Masse de neptunium restante à l'instant t _i	$m_0 = 12 g$	$m_1 = \dots g$	m ₂ = g	m ₃ = g

- 3) Un noyau d'uranium ²³⁹₉₂U se désintègre en donnant le noyau de neptunium ^A_ZNp et une particule X.
 - a- En identifiant la particule X, préciser le type de radioactivité (α , β ou β) de l'uranium 239.
 - b- Indiquer si cette réaction nucléaire est provoquée ou spontanée.
- 4) Sous l'impact d'un neutron lent (¹n), un noyau isotope de l'uranium 239 se scinde en deux noyaux plus légers suivant la réaction nucléaire suivante :

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{146}_{57}La + ^{87}_{35}Br + 3^{1}_{0}n$$

- a- Choisir parmi les termes suivants : fusion, fission, provoquée, spontanée celui (ou ceux) qui correspond(ent) à cette réaction.
- b- Calculer, en MeV, l'énergie E libérée par un noyau d'uranium 235 au cours de cette réaction.

Données : - Masse d'un noyau d'uranium 235 : m $\binom{235}{92}$ U) = 235,04392 u ;

- Masse d'un noyau de lanthane 146 : m $\binom{146}{57}$ La) = 145,92571 u ;
- Masse d'un noyau de brome 87 : $m {87 \choose 35} Br = 86,92069 u$;
- Masse d'un neutron : $m({}_{0}^{1}n) = 1,00866 u$;
- Unité de masse atomique : u = 931,5 MeV.c⁻².