RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

00000

EXAMEN DU BACCALAURÉAT SESSION 2017

Épreuve :	Sciences	Physiques
		,,

Section: Sport

Durée : 2h

Coefficient: 1

Session de contrôle

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

CHIMIE (8 points)

Exercice n°1 (4 points):

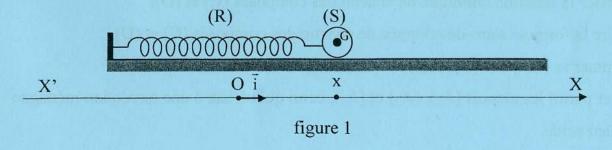
On dispose de trois alcools (A₁), (A₂) et (A₃) consignés dans le tableau suivant :

Alcool	Nom	Formule semi-développée	Classe
(A ₁)		CH ₃ – CH – CH ₃ OH	
(A ₂)		CH ₃ -CH ₂ -CH ₂ -OH	
(A ₃)	2-méthylpropan-2-ol		

- 1) Reproduire et compléter, sur la copie à remettre, le tableau précédent.
- 2) L'oxydation ménagée de l'alcool (A₁) donne un composé oxygéné (B).
 - a- Préciser la fonction chimique du composé (B).
 - b- Ecrire la formule semi-développée de (B).
- 3) L'oxydation ménagée de l'alcool (A₂) donne un composé (C) qui rosit le réactif de Schiff et qui s'oxyde à son tour pour donner un composé (D).
 - a- Préciser la fonction chimique de chacun des composés (C) et (D).
 - b- Ecrire la formule semi-développée de chacun des composés (C) et (D).
 - c- Nommer le composé (D).
- 4) Préciser parmi les alcools (A₁), (A₂) et (A₃), celui qui résiste à une oxydation ménagée en milieu acide.

Exercice n°2 (4 points):

On considère l'amine (A₁) de formule semi-développée CH₃-CH₂-CH₂-CH₂-NH₂ et l'amine (A₂) de formule semi-développée R-NH-CH₃ où R est un groupe alkyle qui peut être :

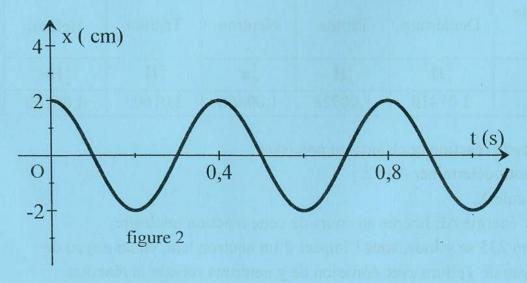

- un méthyle -CH₃;
- ou un éthyle -CH2-CH3;
- ou un propyle $-CH_2-CH_2-CH_3$.
- 1) Donner le nom de l'amine (A₁).
- 2) On prépare une solution aqueuse (S) de l'amine (A₁).
 - a- Ecrire l'équation de la réaction de l'amine (A₁) avec l'eau.
 - b- Indiquer le caractère acido-basique de cette solution.
 - c- Proposer une expérience qui permet de justifier ce caractère.
- 3) L'amine (A₁) réagit avec un chlorure d'acyle de formule semi-développée CH₃ C Cl pour donner le chlorure d'hydrogène (HCl) et un amide (B).
- 4) L'action de l'acide nitreux (HNO₂) sur l'amine (A₂) donne de l'eau et une N-nitrosamine de formule semi-développée : CH₃ CH₂ CH₂ N CH₃
 - a- Trouver la formule semi-développée de l'amine (A2). La nommer.
 - b-Préciser la classe de l'amine (A2).

PHYSIQUE (12 points)

Exercice n°1 (7 points):

Un pendule élastique est formé d'un solide (S), supposé ponctuel, de masse m attaché à l'une des extrémités d'un ressort élastique (R) à spires non jointives, de masse supposée nulle et de raideur $k = 20 \text{ N.m}^{-1}$. L'autre extrémité du ressort est fixe et le solide (S) peut glisser sans frottement sur un plan horizontal.

La position du centre d'inertie G du solide (S) est repérée par son élongation x dans un repère (O, \vec{i}) où O est la position de G lorsque le solide (S) à l'équilibre et \vec{i} un vecteur unitaire porté par l'axe (X'X) comme l'indique la figure 1.



Pour étudier le mouvement de (S), on l'écarte à l'instant t = 0, d'une distance d = 2 cm de sa position d'équilibre et on l'abandonne sans vitesse initiale.

- 1) a- Reproduire, sur la copie à remettre, le schéma de la figure 1 et représenter les forces extérieures qui s'exercent sur (S) à l'instant t.
 - b- Montrer que l'équation différentielle qui régit le mouvement de (S) s'écrit sous forme :

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0 \quad \text{en précisant l'expression } de \, \omega_0 \, .$$

2) La courbe de la figure 2 donne l'évolution de l'élongation x de G au cours du temps.

- a- Donner l'équation horaire de l'oscillateur harmonique étudié en fonction de l'amplitude X_{max} , la période propre T_0 et la phase initiale ϕ_0 .
- b- Déterminer, à partir de cette courbe :
 - l'amplitude X_{max} des oscillations de G ;
 - la période propre To des oscillations de G ;
 - la phase initiale ϕ_0 .
- 3) a- Ecrire, à un instant t, l'expression :
 - * de l'énergie cinétique Ec du solide (S) en fonction de m et de la vitesse instantanée v.
 - * de l'énergie potentielle E_p du système {solide, ressort, terre} en fonction de k et x sachant que l'énergie potentielle de pesanteur, à tout instant, est nulle.
 - b- Déduire l'expression de l'énergie mécanique E du système {solide, ressort, terre}.
 - c- Calculer, en se référant à la courbe de la figure 2, l'énergie mécanique E_0 à l'instant $t_0 = 0$ et l'énergie mécanique E_1 à l'instant $t_1 = 0,2$ s du système {solide, ressort, terre}.
 - d-Déduire, en le justifiant, si ce système est conservatif ou bien non conservatif.

Exercice n°2 (5 points):

La fusion nucléaire d'un noyau de Deutérium avec un noyau de Tritium donne un noyau d'Hélium ${}_{2}^{4}$ He et une particule ${}_{2}^{A}X$.

- 1) a- Définir une réaction de fusion nucléaire.
 - b- Préciser si la réaction de fusion nucléaire est une réaction spontanée ou bien provoquée.
 - c- Les symboles de certains noyaux et particules ainsi que leurs masses sont consignés dans le tableau suivant :

Nom de la particule ou du noyau	Deutérium	Proton	Neutron	Tritium	Helium
Symbole	² ₁ H	¹H	1 n	3 1	⁴ ₂ He
Masse (en u)	2,01410	1,00728	1,00866	3,01605	4,00260

Ecrire l'équation de cette réaction nucléaire, en précisant :

- Les lois utilisées pour déterminer A et Z;
- Le nom de la particule X.
- 2) Calculer, en MeV, l'énergie ΔE libérée au cours de cette réaction nucléaire.
- 3) Un noyau d'Uranium 235 se scinde, sous l'impact d'un neutron lent, en un noyau de Zirconium et un noyau de Tellure avec émission de y neutrons suivant la réaction nucléaire modélisée par l'équation :

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{95}_{40}Zr + ^{138}_{52}Te + y^{1}_{0}n$$

- a- Nommer cette réaction nucléaire provoquée.
- b- Calculer y en précisant la loi utilisée.
- c- Calculer, en MeV, l'énergie ΔE' libérée par un noyau d'Uranium 235 au cours de cette réaction nucléaire.

Données:

- masse d'un noyau d'Uranium 235 : m $\binom{235}{92}$ U) = 235,04392 u ;
- masse d'un noyau de Zirconium 95 : m $\binom{95}{40}$ Zr) = 94,90804 u ;
- masse d'un noyau de Tellure 138 : m ($^{138}_{52}$ Te) = 137,92903 u ;
- masse d'un neutron : m $\binom{1}{0}$ n) = 1,00866 u ;
- unité de masse atomique : u = 931,5MeV.c⁻².